期刊文献+
共找到1,060篇文章
< 1 2 53 >
每页显示 20 50 100
Bifurcation and stability of an improved time-delayed fluid flow model in internet congestion control 被引量:4
1
作者 刘玉良 朱杰 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3772-3776,共5页
Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue lengt... Based on the fluid flow time-delayed model proposed by Misra et al in internet congestion control, one modified time-delayed model is presented, where the influence of the communication delay on the router queue length is investigated in detail. The main advantage of the new model is that its stability domain is larger even without an extra controller. By linear stability analysis and numerical simulation, tbe effectiveness and feasibility of the novel model in internet congestion control are verified. 展开更多
关键词 fluid flow model congestion control time delay Hopf bifurcation
下载PDF
Three-dimensional turbulent model of heat transfer and fluid flow in GTAW process 被引量:1
2
作者 董志波 徐艳利 +3 位作者 魏艳红 马瑞 王淑娟 翟国富 《China Welding》 EI CAS 2010年第2期23-27,共5页
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f... A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results. 展开更多
关键词 heat transfer fluid flow GTAW K-ε turbulent fluid flow model
下载PDF
A Review of the Dynamic Modeling Approaches for Characterizing Fluid Flow in Naturally Fractured Reservoirs
3
作者 M.N.Tarhuni W.R.Sulaiman +2 位作者 M.Z.Jaafar M.Milad A.M.Alghol 《Energy Engineering》 EI 2021年第4期761-795,共35页
Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity... Fluid flow in fractured media has been studied for decades and received considerable attention in the oil and gas industry because of the high productivity of naturally fractured reservoirs.Due to formation complexity and reservoir heterogeneity,characterizing fluid flow with an appropriate reservoir model presents a challenging task that differs relatively from homogeneous conventional reservoirs in many aspects of view,including geological,petrophysical,production,and economics.In most fractured reservoirs,fracture networks create complex pathways that affect hydrocarbon flow,well performance,hence reservoir characterization.A better and comprehensive understanding of the available reservoir modeling approaches is much needed to accurately characterize fluid flow behavior in NFRs.Therefore,in this paper,a perspective review of the available modeling approaches was presented for fluid flow characterization in naturally fractured medium.Modeling methods were evaluated in terms of their description,application,advantages,and disadvantages.This study has also included the applications of these reservoir models in fluid flow characterizing studies and governing equations for fluid flow.Dual continuum models were proved to be better than single continuum models in the presence of large scale fractures.In comparison,discrete models were more appropriate for reservoirs that contain a smaller number of fractures.However,hybrid modeling was the best method to provide accurate and scalable fluid flow modeling.It is our understanding that this paper will bridge the gap between the fundamental understanding and application of NFRs modeling approaches and serve as a useful reference for engineers and researchers for present and future applications. 展开更多
关键词 Naturally fractured reservoirs simulation techniques fluid flow modeling HETEROGENEITY dual continuum modeling discrete fracture network modeling
下载PDF
Global Classical Solution for a Three-dimensional Viscous Liquid-gas Two-fluid Flow Model with Vacuum
4
作者 Lei YAO Jing YANG Zhen-hua GUO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期989-1006,共18页
This is a continuation of the paper (J. Math. Phys., 52(2011), 093102). We consider the Cauchy problem to the three-dimensional viscous liquid-gas two-fluid flow model. The global existence of classical solution i... This is a continuation of the paper (J. Math. Phys., 52(2011), 093102). We consider the Cauchy problem to the three-dimensional viscous liquid-gas two-fluid flow model. The global existence of classical solution is proved, where the initial vacuum is allowed. 展开更多
关键词 Viscous liquid-gas two-fluid flow model classical solution VACUUM
原文传递
Numerical modelling of structural controls on fluid flow and mineralization 被引量:13
5
作者 J.Robinson P.M.Schaubs 《Geoscience Frontiers》 SCIE CAS 2011年第3期449-461,共13页
This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and... This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia). Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu- veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization 展开更多
关键词 Structural control DILATION fluid flow MINERALIZATION Numerical modelling Shilu Cu-deposit Hodgkinson Province
下载PDF
Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders 被引量:9
6
作者 Haitao Qi Hui Jin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第4期301-305,共5页
The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases ... The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus. 展开更多
关键词 Viscoelastic fluid Unsteady flow Fractional Maxwell model Exact solution
下载PDF
Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis 被引量:5
7
作者 Noreen Sher Akbar S.Nadeem 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第1期133-140,共8页
Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper.The Jeffrey fluid has two parameters,the relax... Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper.The Jeffrey fluid has two parameters,the relaxation time λ1 and retardation time λ2.The governing equations are simplified using the case of mild stenosis.Perturbation method is used to solve the resulting equations.The effects of non-Newtonian nature of blood on velocity profile,temperature profile,wall shear stress,shearing stress at the stenotsis throat and impedance of the artery are discussed.The results for Newtonian fluid are obtained as special case from this model. 展开更多
关键词 模型模拟 流体模型 动脉 狭窄 血流 圆锥 变粘度 壁面剪切应力
下载PDF
Simplified Wave Models Applicability to Shallow Mud Flows Modeled as Power-Law Fluids 被引量:1
8
作者 Cristiana DI CRISTO Michele IERVOLINO Andrea VACCA 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1454-1465,共12页
Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood rou... Simplified wave models- such as kinematic,diffusion and quasi-steady- are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows,and especially for flood routing.While their use may guarantee a significant reduction of the computational effort,it is mandatory to define the conditions in which they may be confidently applied.The present paper investigates the applicability conditions of the kinematic,diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids.The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress,such as clay or kaolin suspensions,which are frequently encountered in Chinese rivers.In the framework of a linear analysis,the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one.Based on this comparison,applicability criteria for the different wave approximations for mud flood of power-law fluids are derived.The presented results provide guidelines for selecting the appropriate approximation for a given flow problem,and therefore they may represent a useful tool for engineering predictions. 展开更多
关键词 幂律流体 模型描述 适用性 泥流 建模 高岭土悬浮液 洪水演进 周期性扰动
下载PDF
Numerical modeling of coupled fluid flow,heat transport and mechanical deformation:An example from the Chanziping ore district,South China 被引量:1
9
作者 Minghui Ju Jianwen Yang 《Geoscience Frontiers》 SCIE CAS 2011年第4期577-582,共6页
关键词 Chanziping uranium deposit Numerical modeling Tectonic deformation fluid flow Thermal convection
下载PDF
Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics 被引量:6
10
作者 Zhang Yinghui Lan Xingying Gao Jinsen 《Petroleum Science》 SCIE CAS CSCD 2012年第4期535-543,共9页
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ... A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime. 展开更多
关键词 Gas-solid flow circulating fluidized bed computational particle fluid dynamics modeling HYDRODYNAMICS
下载PDF
FLUID DYNAMICS IN A GAS-STIRRED LADLE——A Separated Flow Model with Stochastical Trajectories
11
作者 ZHOU Ming LI Wencai Central Iron and Steel Research Institute,Ministry of Metallurgical Industry,Beijing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第12期377-383,共7页
A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicte... A separated flow model with stochastical trajectories has been developed to describe the fluid flow in a bubble stirred ladle.The bubble dispersion,turbulent characteristics and gas-liquid interactions can be predicted by this mathematical model.The bubble flow as a dispersed phase is treated in a Lagrangian frame of reference and the analysis of the turbulent flow for liquid phase is conducted in a Eulerian field.The interactions between bubbles and liquid phases are considered as a bubble source term in the control equation for a continuous phase. The Monte Carlo sampling method is used to determine the bubble trajectories.The homoge- neous flow model is also taken into consideration so that it can be compared with the sepa- rated flow model.Numerical predictions using a water model of a ladle show that the pre- dicted results of the separated flow model agree satisfactorily with the experimental results, but the prediction of the homogeneous flow model are not in good agreement with the experi- mental results. 展开更多
关键词 gas-liquid phase region fluid flow separated flow model
下载PDF
Numerical Modeling of Porous Structure of Biomaterial and Fluid Flowing Through Biomaterial
12
作者 王惠敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期278-280,共3页
A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow... A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow behavior of body fluid in porous biomaterials. The model is implemented by GUI ( Graphical User Interface) program in MATLAB , and the results of numerical modeling show that the body fluid percolation is related to the size of pores and porosity. 展开更多
关键词 numerical modeling fluid flow cellular automata porous biomaterial
下载PDF
Effect of Brownian Diffusion on Squeezing Elastico-Viscous Nanofluid Flow with Cattaneo-Christov Heat Flux Model in a Channel with Double Slip Effect
13
作者 Md Enamul Karim Md Abdus Samad 《Applied Mathematics》 2020年第4期277-291,共15页
The present study deals with the analysis of heat transfer of the unsteady Maxwell nanofluid flow in a squeezed rotating channel of a porous extensile surface subject to the velocity and thermal slip effects incorpora... The present study deals with the analysis of heat transfer of the unsteady Maxwell nanofluid flow in a squeezed rotating channel of a porous extensile surface subject to the velocity and thermal slip effects incorporating the theory of heat flow intensity of Cattaneo-Christov model for the expression of the energy distribution in preference to the classical Fourier’s law. A set of transformations is occupied to renovate the current model in a system of nonlinear ordinary differential equations that are numerically decoded with the help of MATLAB integrated function bvp4c. The effects of various flow control parameters are investigated for the momentum, temperature and diffusion profiles, as well as for the wall shearing stress and the heat and mass transfer. The results are finally described from the material point of view. A comparison of heat flux models of Cattaneo-Christov and Fourier is also performed. An important result from the present work is that the squeezing parameter is strong enough in the middle of the channel to retard the fluid flow. 展开更多
关键词 Maxwell fluid model SQUEEZING flow Elastico-Viscous Nanofluid CHANNEL Rotation
下载PDF
A THREE-FLUID MODEL OF THE SAND-DRIVEN FLOW
14
作者 刘大有 董飞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第7期647-657,共11页
The sand-driven flow is studied from the continuum viewpoint in this paper. The crux of this work is how to model the stresses of the particle phase properly. By analysing the two-fluid model which usually, works in s... The sand-driven flow is studied from the continuum viewpoint in this paper. The crux of this work is how to model the stresses of the particle phase properly. By analysing the two-fluid model which usually, works in solving gas-particle two-phase .flow,. we find that this model has many. deficiencies for studying the sand-driven flow,even for the simplest case- the steady, two-dimensional fully-developed flow.Considering this, we have proposed the three-fluid model in which the upward particles and the downward-particles ore regarded as two kinds of fluids respectively.It is shown that the three-fluid model is better than the two-fluid model in reflecting the internal structure of the flow, region and the influence of the boundary situations on the flow. and it is advantageous to find an approximate solution in that the main components of the particle-phase stresses can be explicitly expressed by those variables in the three-fluid model.In the end, the governing equations as well as the boundary. conditions for the three-fluid model are provided with a discussion. 展开更多
关键词 Sand-driven flow two-phase flow two-fluid model three-fluid model
下载PDF
Coupled Modeling of Electromagnetic Fleld,Fluid Flow,Heat Transfer and Solidification During Conventional DC Casting and Low Ftequency Electrmagnetic Casting of 7xxx Aluminum Alloys
15
作者 Nagaum Hiromi 《特种铸造及有色合金》 CAS CSCD 北大核心 2008年第S1期485-490,共6页
A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model i... A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting. 展开更多
关键词 low frequency electromagnetic casting DC casting coupled modeling temperature field fluid flow solidification.
下载PDF
SECOND-ORDER MOMENT MODEL FOR DENSE TWO-PHASE TURBULENT FLOW OF BINGHAM FLUID WITH PARTICLES
16
作者 曾卓雄 周力行 刘志和 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第10期1373-1381,共9页
The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collisi... The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow. 展开更多
关键词 Bingham fluid two-phase flow yield stress second-order moment model
下载PDF
Exact Solution of Unsteady Flow of Viscoelastic Fluid in a Pipe with Fractional Maxwell Model
17
作者 贾九红 杜俭业 +1 位作者 汪玉 华宏星 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期813-816,共4页
The unsteady flow of viscoelastic fluid in a cylindrical pipe was investigated using the fractional Maxwell model. Two special cases of unsteady pipe flow were expressed. The first is start-up flow, and the second is ... The unsteady flow of viscoelastic fluid in a cylindrical pipe was investigated using the fractional Maxwell model. Two special cases of unsteady pipe flow were expressed. The first is start-up flow, and the second is oscillating flow. The exact solution of start-up flow under a constant pressure gradient was obtained by using the theories of Laplace transform and Fourier-Bessel series for fractional derivatives. The exact solution of oscillating flow was obtained by utilizing the separation of variables. 展开更多
关键词 FRACTIONAL Maxwell model viscoelastic fluid unsteady PIPE flow START-UP flow oscillating flow exact solution
下载PDF
Numerical Simulation of Countercurrent Flow in a PWR Hot Leg by Using Two-Fluid Model
18
作者 Michio Murase Yoichi Utanohara +3 位作者 Chihiro Yanagi Takashi Takata Akira Yamaguchi Akio Tomiyama 《Journal of Energy and Power Engineering》 2013年第7期1215-1222,共8页
关键词 双流体模型 数值模拟 计算流体动力学 逆流 压水堆 VOF方法 CCFL 流体体积
下载PDF
Investigation on Pressure Drop of Fluid-Solid Mixture Flow through Pipes Using CFD and SK Model
19
作者 Miller Jothi Redae Haimanot Udaya Kumar 《Journal of Applied Mathematics and Physics》 2019年第1期218-232,共15页
The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called P... The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called Pneumo transport, whereas transporting material with water or any other liquid through pipeline is called as hydraulic transport. A large number of installations are now available globally to transport solid materials to short, medium, and long distances using water/air as carrier fluid. However, the design of such system of pipeline is still an empirical art. In the present investigation, one generalized mathematical model developed by Shrivastava and Kar (SK Model) and CFD models were used and compared with experimental results for pneumatic and hydraulic transport of granular solids. The motivation of present work is to find the accuracy of SK model based on analytical, empirical and semi-empirical for the prediction of pressure drop and comparing the result with CFD based on mathematical equation for the mixture flow in the horizontal and vertical pipe lines. The comparison of pressure drop results obtained by using SK model and CFD model were validated with the experimental results for pneumatic and hydraulic transport of solids through. From the comparison results, it was observed that the results of pressure drop predicted by SK model are more accurate than the CFD models for all the cases considered. 展开更多
关键词 Pressure DROP SK model CFD models Hydraulic and PNEUMATIC Transport Solid and fluid flow
下载PDF
Effects of hydrocarbon generation on fluid flow in the Ordos Basin and its relationship to uranium mineralization 被引量:12
20
作者 Chunji Xue Guoxiang Chi Wei Xue 《Geoscience Frontiers》 SCIE CAS 2011年第3期439-447,共9页
The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbon... The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing, reducing fluid and a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sedi- ment compaction and heating. Our results indicate that when hydrocarbon generation is taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simu- lation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow. 展开更多
关键词 Ordos Basin Uranium deposits HYDRODYNAMICS Hydrocarbon generation fluid overpressure fluid flow Numerical modeling
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部