In the management of critically ill patients, the assessment of volume responsiveness and the decision to administer a fluid bolus constitute a common dilemma for physicians. Static indices of cardiac preload are poor...In the management of critically ill patients, the assessment of volume responsiveness and the decision to administer a fluid bolus constitute a common dilemma for physicians. Static indices of cardiac preload are poor predictors of volume responsiveness. Passive leg raising (PLR) mimics an endogenous volume expansion (VE) that can be used to predict fluid responsiveness. This study was to assess the changes in stroke volume index (SVI) induced by PLR as an indicator of fluid responsiveness in mechanically ventilated patients with severe sepsis. This was a prospective study. Thirty-two mechanically ventilated patients with severe sepsis were admitted for VE in ICU of the First Affiliated Hospital, Zhejiang University School of Medicine and Ningbo Medical Treatment Center Lihuili Hospital from May 2010 to December 2011. Patients with non-sinus rhythm or arrhythmia, parturients, and amputation of the lower limbs were excluded. Measurements of SVI were obtained in a semi-recumbent position (baseline) and during PLR by the technique of pulse indicator continuous cardiac output (PiCCO) system prior to VE. Measurements were repeated after VE (500 mL 6% hydroxyethyl starch infusion within 30 minutes) to classify patients as either volume responders or non-responders based on their changes in stroke volume index (ASVI) over 15%. Heart rate (HR), systolic artery blood pressure (ABPs), diastolic artery blood pressure (ABPd), mean arterial blood pressure (ABPm), mean central venous pressure (CVPm) and cardiac index (CI) were compared between the two groups. The changes ofABPs, ABPm, CVPm, and SVI after PLR and VE were compared with the indices at the baseline. The ROC curve was drawn to evaluate the value of ASVI and the change of CVPm (ACVPm) in predicting volume responsiveness. SPSS 17.0 software was used for statistical analysis. Among the 32 patients, 22 were responders and 10 were non-responders. After PLR among the responders, some hemodynamic variables (including ABPs, ABPd, ABPm and CVPm) were significantly elevated (101.2±17.6 vs. 118.6±23.7, P=0.03; 52.8±10.7 vs. 64.8±10.7, P=0.006; 68.3±11.7 vs. 81.9±14.4, P=0.008; 6.8±3.2 vs. 11.9±4.0, P=0.001). After PLR, the area under curve (AUC) and the ROC curve of ASVI and ACVPm for predicting the responsiveness after VE were 0.882±0.061 (95%CI 0.759-1.000) and 0.805±0.079 (95%CI 0.650-0.959) when the cut-off levels of ASVI and ACVPm were 8.8% and 12.7%, the sensitivities were 72.7% and 72.7%, and the specificities were 80% and 80%. Changes in ASVI and ACVPm induced by PLR are accurate indices for predicting fluid responsiveness in mechanically ventilated patients with severe sepsis.展开更多
Background: Hemodynamic instability is common in critical patients and not all patients respond to fluid challenge, so we need accurate and rapid hemodynamic techniques to help the clinicians to guide fluid treatment....Background: Hemodynamic instability is common in critical patients and not all patients respond to fluid challenge, so we need accurate and rapid hemodynamic techniques to help the clinicians to guide fluid treatment. Numerous hemodynamic techniques have been used to predict fluid responsiveness till now. Transthoracic echocardiography (TTE) appears to have the ability to predict fluid responsiveness, but there is no consensus on whether it can be used by passive leg raising (PLR). Methods: We performed a literature search using MEDLINE (source PubMed, from 1947), EMBASE (from 1974) and the Cochrane Database of Systematic Reviews for prospective studies with no restrictions. Pooled effect estimates were obtained by using random-effects meta-analysis. Results: 7 prospective studies involving 261 patients and 285 boluses were identified. The pooled sensitivity and specificity of TTE are 86% (79% - 91%) and 90% (83% - 94%), respectively. The summary receiver operating characteristic (sROC) curve shows an optimum joint sensitivity and specificity of 0.88, with area under the sROC curve (AUC) of 0.94. The result of diagnostic odds ratio (DOR) is 50.62 (95% confidence interval [CI]: 23.70 - 108.12). The results of positive likelihood ratio (+LR) and negative likelihood ratio (?LR) are 7.07 (95% CI: 4.39 - 11.38) and 0.19 (95% CI: 0.13 - 0.28), which indicated strong diagnostic evidence. Conclusions: TTE is a repeatable and reliable noninvasive tool to predict fluid responsiveness in the critically ill during PLR with good test performance. This meta-analysis brings evidence to employ well-trained clinician-echocardiographers to assess patients’ volume statue via TTE to benefit daily work in intensive care units (ICUs).展开更多
Objective: To analyze the accuracy and specificity of recent studies to compare the ability of predicting fluid responsiveness with Passive Leg Raising (PLR) by using invasive or non-invasive techniques during passive...Objective: To analyze the accuracy and specificity of recent studies to compare the ability of predicting fluid responsiveness with Passive Leg Raising (PLR) by using invasive or non-invasive techniques during passive leg raising. Data Sources: MEDLINE, EMBASE and the Cochrane Database of Systematic Reviews were systematically searched. Study Selection: Clinical trials that reported the sensitivity, specificity and area under the receiver operating characteristic curve (AUC) between the responder and non-responder induced by passive leg raising and Volume Expansion (VE) in critical ill patients were selected. 246 studies were screened, 14 studies were included for data extraction, which met our inclusion criteria. Data Extraction: Data were abstracted on study characteristics, patient population, type and amount of VE, time of VE, definition of responders, position, techniques used for measuring hemodynamic change, number and percentage of responders, the correlation coefficient, sensitivity, specificity, best threshold and area under the ROC curve (AUC). Meta-analytic techniques were used to summarize the data. Data Synthesis: A total of 524 critical ill patients from 14 studies were analyzed. Data are reported as point estimate (95% confidence intervals). The pooled sensitivity and specificity of invasive techniques were 80% (73% - 85%) and 89% (84% - 93%) respectively with the area under the sROC of 0.94. While, the pooled sensitivity and specificity of non-invasive techniques were 88% (84% - 92%) and 91% (86% - 94%) respectively with the area under the sROC of 0.95. The pooled DOR of invasive techniques was 32.2 (13.6 - 76.8), which was much lower than that of non-invasive techniques with the value of 64.3 (33.9 - 121.7). Conclusions: The hemodynamic indexes changes induced by PLR could reliably predict fluid responsiveness. Non-invasive hemodynamic techniques with their accuracy and safety can benefit the daily work in ICUs. Because the number of patients included in the present trials was small, further studies should be undertaken to confirm these findings.展开更多
Background and objective: Stroke volume variation(SVV) has high sensitivity and specificity in predicting fluid responsiveness. However, sinus rhythm(SR) and controlled mechanical ventilation(CV) are mandatory ...Background and objective: Stroke volume variation(SVV) has high sensitivity and specificity in predicting fluid responsiveness. However, sinus rhythm(SR) and controlled mechanical ventilation(CV) are mandatory for their application. Several studies suggest a limited applicability of SVV in intensive care unit(ICU) patients. We hypothesized that the applicability of SVV might be different over time and within certain subgroups of ICU patients. Therefore, we analysed the prevalence of SR and CV in ICU patients during the first 24 h of Pi CCO-monitoring(primary endpoint) and during the total ICU stay. We also investigated the applicability of SVV in the subgroups of patients with sepsis, cirrhosis, and acute pancreatitis. Methods: The prevalence of SR and CV was documented immediately before 1241 thermodilution measurements in 88 patients. Results: In all measurements, SVV was applicable in about 24%. However, the applicability of SVV was time-dependent: the prevalence of both SR and CV was higher during the first 24 h compared to measurements thereafter(36.1% vs. 21.9%; P0.001). Within different subgroups, the applicability during the first 24 h of monitoring ranged between 0% in acute pancreatitis, 25.5% in liver failure, and 48.9% in patients without pancreatitis, liver failure, pneumonia or sepsis. Conclusions: The applicability of SVV in a predominantly medical ICU is only about 25%–35%. The prevalence of both mandatory criteria decreases over time during the ICU stay. Furthermore, the applicability is particularly low in patients with acute pancreatitis and liver failure.展开更多
Purpose: Respiratory variation in inferior vena cava (ΔIVC) has been extensively studied in predicting fluid responsiveness, but the results are conflicting. We performed a systemic review and meta-analysis ...Purpose: Respiratory variation in inferior vena cava (ΔIVC) has been extensively studied in predicting fluid responsiveness, but the results are conflicting. We performed a systemic review and meta-analysis of studies aiming at investigating the diagnostic accuracy of ΔIVC in predicting fluid responsiveness. Methods: MEDLINE, EMBASE, Cochrane Database and Web of Science were screened for relevant original and review articles from inception to July 2016. The meta-analysis determined the pooled sensitivity, specificity, diagnostic odds ratio (DOR) and area under the ROC curve (AUROC). In addition, subgroup analyses were performed in mechanically ventilated patients and spontaneously breathing patients. Results: A total of 20 studies involving 635 patients were included. Cutoff values of ΔIVC varied from 12% to 42%, the pooled sensitivity and specificity was 0.68 (0.62 - 0.75) and 0.80 (0.75 - 0.85), respectively. The DOR was 14.2 (6.0 - 33.6) and the AUROC was 0.86 (0.78 - 0.93). Subgroup analysis showed better diagnostic performance in patients on mechanical ventilation than in spontaneously breathing patients with higher sensitivity (0.75 vs. 0.56), specificity (0.82 vs. 0.78), DOR (22.9 vs. 7.9) and AUROC (0.90 vs. 0.80). The best threshold of ΔIVC in patients on mechanical ventilation was IVC distensibility index (ΔIVC ≥17% ±4%), compared to IVC collapsibility index (ΔcIVC ≥33% ±12%) in spontaneously breathing patients. Conclusion: ΔIVC is not an accurate predictor of fluid responsiveness in patients with acute circulatory failure. In patients on mechanical ventilation, the predicting ability of ΔIVC was moderate with acceptable sensitivity and specificity;in spontaneously breathing patients, the specificity remains acceptable but its sensitivity is poor.展开更多
Introduction: Fluid resuscitation is the cornerstone in the management of hemodynamically unstable patients. Dynamic parameters of fluid responsiveness, like pulse pressure variation, have the advantage of being more ...Introduction: Fluid resuscitation is the cornerstone in the management of hemodynamically unstable patients. Dynamic parameters of fluid responsiveness, like pulse pressure variation, have the advantage of being more reliable index for fluid management. Objective: The aim of our study was to compare between arterial pulse pressure variation (PPV) versus central venous pressure (CVP) as a predictor for fluid responsiveness during major open abdominal operations. Patients and Methods: 60 adult patients under general anesthesia with mechanical ventilation underwent open major abdominal surgical procedures were included in our prospective randomized controlled study. Intravenous fluid was infused and monitored by CVP in control group or by PPV in the other group. Hemodynamic variables (heart rate, invasive blood pressure, PPV and CVP) were measured at baseline after anesthesia induction and every 10 min, during first hour of operation, and then every 15 min, till end of surgery. Blood loss and total i.v. fluid & blood transfusion given to patients were recorded and compared between two groups intraoperatively. Results: Patients in the PPV group required more intraoperative fluid and blood transfusion than patients in CVP group to achieve more stable hemodynamic parameters. The fall in blood pressure (>20% of baseline) and increase in heart rate are more common in CVP group (p Conclusion: PPV is a better predictor and a good guide for fluid responsiveness. More stable hemodynamic variables are observed in PPV group.展开更多
Background:Passive leg raising (PLR) represents a "self-volume expansion (VE)" that could predict fluid responsiveness,but the influence of systolic cardiac function on PLR has seldom been reported.This study a...Background:Passive leg raising (PLR) represents a "self-volume expansion (VE)" that could predict fluid responsiveness,but the influence of systolic cardiac function on PLR has seldom been reported.This study aimed to investigate whether systolic cardiac function,estimated by the global ejection fraction (GEF) from transpulmonary-thermodilution,could influence the diagnostic value of PLR.Methods:This prospective,observational study was carried out in the surgical Intensive Care Unit of the First Affiliated Hospital of Sun Yat-sen University from December 2013 to July 2015.Seventy-eight mechanically ventilated patients considered for VE were prospectively included and divided into a low-GEF (〈20%) and a near-normal-GEF (〉20%) group.Within each group,baseline hemodynamics,after PLR and after VE (250 ml 5% albumin over 30 min),were recorded.PLR-induced hemodynamic changes (PLR-△) were calculated.Fluid responders were defined by a 15% increase of stroke volume (SV) after VE.Results:Twenty-five out of 38 patients were responders in the GEF 〈20% group,compared to 26 out of 40 patients in the GEF 〉20% group.The thresholds of PLR-△SV and PLR-△ cardiac output (PLR-△CO) for predicting fluid responsiveness were higher in the GEF 〉20% group than in the GEF 〈20% group (△SV:12% vs.8%;△CO:7% vs.6%),with increased sensitivity (△SV:92% vs.92%;△CO:81% vs.80%) and specificity (△SV:86% vs.70%;△CO:86% vs.77%),respectively PLR-△ heart rate could predict fluid responsiveness in the GEF 〉20% group with a threshold value of-5% (sensitivity 65%,specificity 93%) but could not in the GEF 〈20% group.The pressure index changes were poor predictors.Conclusions:In the critically ill patients on mechanical ventilation,the diagnostic value of PLR for predicting fluid responsiveness depends on cardiac systolic function.Thus,cardiac systolic function must be considered when using PLR.Trial Registration:Chinese Clinical Trial Register,ChiCTR-OCH-13004027;http://www.chictr.org.cn/showproj.aspx?proj=5540.展开更多
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac...Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
文摘In the management of critically ill patients, the assessment of volume responsiveness and the decision to administer a fluid bolus constitute a common dilemma for physicians. Static indices of cardiac preload are poor predictors of volume responsiveness. Passive leg raising (PLR) mimics an endogenous volume expansion (VE) that can be used to predict fluid responsiveness. This study was to assess the changes in stroke volume index (SVI) induced by PLR as an indicator of fluid responsiveness in mechanically ventilated patients with severe sepsis. This was a prospective study. Thirty-two mechanically ventilated patients with severe sepsis were admitted for VE in ICU of the First Affiliated Hospital, Zhejiang University School of Medicine and Ningbo Medical Treatment Center Lihuili Hospital from May 2010 to December 2011. Patients with non-sinus rhythm or arrhythmia, parturients, and amputation of the lower limbs were excluded. Measurements of SVI were obtained in a semi-recumbent position (baseline) and during PLR by the technique of pulse indicator continuous cardiac output (PiCCO) system prior to VE. Measurements were repeated after VE (500 mL 6% hydroxyethyl starch infusion within 30 minutes) to classify patients as either volume responders or non-responders based on their changes in stroke volume index (ASVI) over 15%. Heart rate (HR), systolic artery blood pressure (ABPs), diastolic artery blood pressure (ABPd), mean arterial blood pressure (ABPm), mean central venous pressure (CVPm) and cardiac index (CI) were compared between the two groups. The changes ofABPs, ABPm, CVPm, and SVI after PLR and VE were compared with the indices at the baseline. The ROC curve was drawn to evaluate the value of ASVI and the change of CVPm (ACVPm) in predicting volume responsiveness. SPSS 17.0 software was used for statistical analysis. Among the 32 patients, 22 were responders and 10 were non-responders. After PLR among the responders, some hemodynamic variables (including ABPs, ABPd, ABPm and CVPm) were significantly elevated (101.2±17.6 vs. 118.6±23.7, P=0.03; 52.8±10.7 vs. 64.8±10.7, P=0.006; 68.3±11.7 vs. 81.9±14.4, P=0.008; 6.8±3.2 vs. 11.9±4.0, P=0.001). After PLR, the area under curve (AUC) and the ROC curve of ASVI and ACVPm for predicting the responsiveness after VE were 0.882±0.061 (95%CI 0.759-1.000) and 0.805±0.079 (95%CI 0.650-0.959) when the cut-off levels of ASVI and ACVPm were 8.8% and 12.7%, the sensitivities were 72.7% and 72.7%, and the specificities were 80% and 80%. Changes in ASVI and ACVPm induced by PLR are accurate indices for predicting fluid responsiveness in mechanically ventilated patients with severe sepsis.
文摘Background: Hemodynamic instability is common in critical patients and not all patients respond to fluid challenge, so we need accurate and rapid hemodynamic techniques to help the clinicians to guide fluid treatment. Numerous hemodynamic techniques have been used to predict fluid responsiveness till now. Transthoracic echocardiography (TTE) appears to have the ability to predict fluid responsiveness, but there is no consensus on whether it can be used by passive leg raising (PLR). Methods: We performed a literature search using MEDLINE (source PubMed, from 1947), EMBASE (from 1974) and the Cochrane Database of Systematic Reviews for prospective studies with no restrictions. Pooled effect estimates were obtained by using random-effects meta-analysis. Results: 7 prospective studies involving 261 patients and 285 boluses were identified. The pooled sensitivity and specificity of TTE are 86% (79% - 91%) and 90% (83% - 94%), respectively. The summary receiver operating characteristic (sROC) curve shows an optimum joint sensitivity and specificity of 0.88, with area under the sROC curve (AUC) of 0.94. The result of diagnostic odds ratio (DOR) is 50.62 (95% confidence interval [CI]: 23.70 - 108.12). The results of positive likelihood ratio (+LR) and negative likelihood ratio (?LR) are 7.07 (95% CI: 4.39 - 11.38) and 0.19 (95% CI: 0.13 - 0.28), which indicated strong diagnostic evidence. Conclusions: TTE is a repeatable and reliable noninvasive tool to predict fluid responsiveness in the critically ill during PLR with good test performance. This meta-analysis brings evidence to employ well-trained clinician-echocardiographers to assess patients’ volume statue via TTE to benefit daily work in intensive care units (ICUs).
文摘Objective: To analyze the accuracy and specificity of recent studies to compare the ability of predicting fluid responsiveness with Passive Leg Raising (PLR) by using invasive or non-invasive techniques during passive leg raising. Data Sources: MEDLINE, EMBASE and the Cochrane Database of Systematic Reviews were systematically searched. Study Selection: Clinical trials that reported the sensitivity, specificity and area under the receiver operating characteristic curve (AUC) between the responder and non-responder induced by passive leg raising and Volume Expansion (VE) in critical ill patients were selected. 246 studies were screened, 14 studies were included for data extraction, which met our inclusion criteria. Data Extraction: Data were abstracted on study characteristics, patient population, type and amount of VE, time of VE, definition of responders, position, techniques used for measuring hemodynamic change, number and percentage of responders, the correlation coefficient, sensitivity, specificity, best threshold and area under the ROC curve (AUC). Meta-analytic techniques were used to summarize the data. Data Synthesis: A total of 524 critical ill patients from 14 studies were analyzed. Data are reported as point estimate (95% confidence intervals). The pooled sensitivity and specificity of invasive techniques were 80% (73% - 85%) and 89% (84% - 93%) respectively with the area under the sROC of 0.94. While, the pooled sensitivity and specificity of non-invasive techniques were 88% (84% - 92%) and 91% (86% - 94%) respectively with the area under the sROC of 0.95. The pooled DOR of invasive techniques was 32.2 (13.6 - 76.8), which was much lower than that of non-invasive techniques with the value of 64.3 (33.9 - 121.7). Conclusions: The hemodynamic indexes changes induced by PLR could reliably predict fluid responsiveness. Non-invasive hemodynamic techniques with their accuracy and safety can benefit the daily work in ICUs. Because the number of patients included in the present trials was small, further studies should be undertaken to confirm these findings.
文摘Background and objective: Stroke volume variation(SVV) has high sensitivity and specificity in predicting fluid responsiveness. However, sinus rhythm(SR) and controlled mechanical ventilation(CV) are mandatory for their application. Several studies suggest a limited applicability of SVV in intensive care unit(ICU) patients. We hypothesized that the applicability of SVV might be different over time and within certain subgroups of ICU patients. Therefore, we analysed the prevalence of SR and CV in ICU patients during the first 24 h of Pi CCO-monitoring(primary endpoint) and during the total ICU stay. We also investigated the applicability of SVV in the subgroups of patients with sepsis, cirrhosis, and acute pancreatitis. Methods: The prevalence of SR and CV was documented immediately before 1241 thermodilution measurements in 88 patients. Results: In all measurements, SVV was applicable in about 24%. However, the applicability of SVV was time-dependent: the prevalence of both SR and CV was higher during the first 24 h compared to measurements thereafter(36.1% vs. 21.9%; P0.001). Within different subgroups, the applicability during the first 24 h of monitoring ranged between 0% in acute pancreatitis, 25.5% in liver failure, and 48.9% in patients without pancreatitis, liver failure, pneumonia or sepsis. Conclusions: The applicability of SVV in a predominantly medical ICU is only about 25%–35%. The prevalence of both mandatory criteria decreases over time during the ICU stay. Furthermore, the applicability is particularly low in patients with acute pancreatitis and liver failure.
文摘Purpose: Respiratory variation in inferior vena cava (ΔIVC) has been extensively studied in predicting fluid responsiveness, but the results are conflicting. We performed a systemic review and meta-analysis of studies aiming at investigating the diagnostic accuracy of ΔIVC in predicting fluid responsiveness. Methods: MEDLINE, EMBASE, Cochrane Database and Web of Science were screened for relevant original and review articles from inception to July 2016. The meta-analysis determined the pooled sensitivity, specificity, diagnostic odds ratio (DOR) and area under the ROC curve (AUROC). In addition, subgroup analyses were performed in mechanically ventilated patients and spontaneously breathing patients. Results: A total of 20 studies involving 635 patients were included. Cutoff values of ΔIVC varied from 12% to 42%, the pooled sensitivity and specificity was 0.68 (0.62 - 0.75) and 0.80 (0.75 - 0.85), respectively. The DOR was 14.2 (6.0 - 33.6) and the AUROC was 0.86 (0.78 - 0.93). Subgroup analysis showed better diagnostic performance in patients on mechanical ventilation than in spontaneously breathing patients with higher sensitivity (0.75 vs. 0.56), specificity (0.82 vs. 0.78), DOR (22.9 vs. 7.9) and AUROC (0.90 vs. 0.80). The best threshold of ΔIVC in patients on mechanical ventilation was IVC distensibility index (ΔIVC ≥17% ±4%), compared to IVC collapsibility index (ΔcIVC ≥33% ±12%) in spontaneously breathing patients. Conclusion: ΔIVC is not an accurate predictor of fluid responsiveness in patients with acute circulatory failure. In patients on mechanical ventilation, the predicting ability of ΔIVC was moderate with acceptable sensitivity and specificity;in spontaneously breathing patients, the specificity remains acceptable but its sensitivity is poor.
文摘Introduction: Fluid resuscitation is the cornerstone in the management of hemodynamically unstable patients. Dynamic parameters of fluid responsiveness, like pulse pressure variation, have the advantage of being more reliable index for fluid management. Objective: The aim of our study was to compare between arterial pulse pressure variation (PPV) versus central venous pressure (CVP) as a predictor for fluid responsiveness during major open abdominal operations. Patients and Methods: 60 adult patients under general anesthesia with mechanical ventilation underwent open major abdominal surgical procedures were included in our prospective randomized controlled study. Intravenous fluid was infused and monitored by CVP in control group or by PPV in the other group. Hemodynamic variables (heart rate, invasive blood pressure, PPV and CVP) were measured at baseline after anesthesia induction and every 10 min, during first hour of operation, and then every 15 min, till end of surgery. Blood loss and total i.v. fluid & blood transfusion given to patients were recorded and compared between two groups intraoperatively. Results: Patients in the PPV group required more intraoperative fluid and blood transfusion than patients in CVP group to achieve more stable hemodynamic parameters. The fall in blood pressure (>20% of baseline) and increase in heart rate are more common in CVP group (p Conclusion: PPV is a better predictor and a good guide for fluid responsiveness. More stable hemodynamic variables are observed in PPV group.
文摘Background:Passive leg raising (PLR) represents a "self-volume expansion (VE)" that could predict fluid responsiveness,but the influence of systolic cardiac function on PLR has seldom been reported.This study aimed to investigate whether systolic cardiac function,estimated by the global ejection fraction (GEF) from transpulmonary-thermodilution,could influence the diagnostic value of PLR.Methods:This prospective,observational study was carried out in the surgical Intensive Care Unit of the First Affiliated Hospital of Sun Yat-sen University from December 2013 to July 2015.Seventy-eight mechanically ventilated patients considered for VE were prospectively included and divided into a low-GEF (〈20%) and a near-normal-GEF (〉20%) group.Within each group,baseline hemodynamics,after PLR and after VE (250 ml 5% albumin over 30 min),were recorded.PLR-induced hemodynamic changes (PLR-△) were calculated.Fluid responders were defined by a 15% increase of stroke volume (SV) after VE.Results:Twenty-five out of 38 patients were responders in the GEF 〈20% group,compared to 26 out of 40 patients in the GEF 〉20% group.The thresholds of PLR-△SV and PLR-△ cardiac output (PLR-△CO) for predicting fluid responsiveness were higher in the GEF 〉20% group than in the GEF 〈20% group (△SV:12% vs.8%;△CO:7% vs.6%),with increased sensitivity (△SV:92% vs.92%;△CO:81% vs.80%) and specificity (△SV:86% vs.70%;△CO:86% vs.77%),respectively PLR-△ heart rate could predict fluid responsiveness in the GEF 〉20% group with a threshold value of-5% (sensitivity 65%,specificity 93%) but could not in the GEF 〈20% group.The pressure index changes were poor predictors.Conclusions:In the critically ill patients on mechanical ventilation,the diagnostic value of PLR for predicting fluid responsiveness depends on cardiac systolic function.Thus,cardiac systolic function must be considered when using PLR.Trial Registration:Chinese Clinical Trial Register,ChiCTR-OCH-13004027;http://www.chictr.org.cn/showproj.aspx?proj=5540.
文摘Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.