The non-linear Fokker-Planck equation arises in describing the evolution of stochastic system, which is a variant of the Boltzmann equation modeling the evolution of the random system with Brownian motion, where the c...The non-linear Fokker-Planck equation arises in describing the evolution of stochastic system, which is a variant of the Boltzmann equation modeling the evolution of the random system with Brownian motion, where the collision term is replaced by a drift-diffusion operator. This model conserves mass, momentum and energy;the dissipation is much weaker than that in a simplified model we considered before which conserved only mass, thus more difficult to analyze. The macro-micro decomposition of the solution around the local Maxwellian introduced by T.-P. Liu, T. Yang and S.-H. Yu for Boltzmann equation is used, to reformulate the model into a fluid-type system incorporate viscosity and heat diffusion terms, coupled with an equation of the microscopic part. The viscosity and heat diffusion terms can give dissipative mechanism for the analysis of the model.展开更多
文摘The non-linear Fokker-Planck equation arises in describing the evolution of stochastic system, which is a variant of the Boltzmann equation modeling the evolution of the random system with Brownian motion, where the collision term is replaced by a drift-diffusion operator. This model conserves mass, momentum and energy;the dissipation is much weaker than that in a simplified model we considered before which conserved only mass, thus more difficult to analyze. The macro-micro decomposition of the solution around the local Maxwellian introduced by T.-P. Liu, T. Yang and S.-H. Yu for Boltzmann equation is used, to reformulate the model into a fluid-type system incorporate viscosity and heat diffusion terms, coupled with an equation of the microscopic part. The viscosity and heat diffusion terms can give dissipative mechanism for the analysis of the model.