Serpentinized peridotites in the Yangkou(YK),Suoluoshu(SLS) and Hujialin(HJL) areas in the Sulu ultrahighpressure terrane represent the relic of ancient subcontinental lithospheric mantle below the North China Craton....Serpentinized peridotites in the Yangkou(YK),Suoluoshu(SLS) and Hujialin(HJL) areas in the Sulu ultrahighpressure terrane represent the relic of ancient subcontinental lithospheric mantle below the North China Craton.Their protoliths,harzburgite and dunite,were variably hydrated by aqueous fluids released from subducting Yangtze continent.The rocks are enriched in fluid-mobile elements(FME) including Sb(42–333 times the depleted mantle value) and Pb(30–476 times).The degrees of the FME enrichment are comparable to that of the Himalayan forearc serpentinites,and greater than forearc mantle serpentinites from Marianas,suggesting that the degrees of FME enrichment in the forearc serpentinites are greater in continental subduction zones than those in the oceanic subduction zones.Lizardite after olivine in the SLS serpentinite shows higher degrees of enrichment in Sb and As than those for antigorite after both olivine and orthopyroxene in the YK area.The antigorite has highly enriched in Pb,U,Cs,and LREE,but not for the lizardite.The abundance of FME in two different species of serpentine reflects the different temperature of hydration.At temperature lower than 300 ℃,formed lizardite at shallow depths of the mantle wedge incorporates elements that are fluid mobile at low temperatures,such as Sb and As.When the temperature greater than 300 ℃,formed antigorite at a relatively deep mantle wedge incorporate more FME from the subducting continental slab(or fragments),including Pb,U,Cs,LREE as well as Sb and As.The eventual breakdown of antigorite(600–700 ℃) in prograde metamorphism would discharge water as well as FME into the subducting channel and/or the overlying mantle.展开更多
Serpentinites,which contain up to 13 wt%of water,are important reservoirs for chemical recycling in subduction zones.In the past two decades,forearc mantle serpentinites were identified in different locations around t...Serpentinites,which contain up to 13 wt%of water,are important reservoirs for chemical recycling in subduction zones.In the past two decades,forearc mantle serpentinites were identified in different locations around the world.Here,we present petrology and whole rock chemistry of ultramafic and mafic rocks dredged from the Hahajima Seamount,which is located 24–40 km west to the junction of the Izu-Bonin Trench and the Mariana Trench.Nearly all the collected samples are extensively hydrated,and olivine grains in ultramafic rocks are replaced by serpentine minerals,with only one sample preserving remaining trace of orthopyroxene.Our new results show that the Hahajima serpentinized peridotite samples are all MgO-rich(~42 wt%),but have low contents in Al2O3,CaO,rare earth and high field strength elements,which is consistent with the overall depleted character of their mantle protoliths.Model calculations indicate that these Hahajima peridotite samples were derived from 10%–25%partial melting of the presumed fertile mantle source,which is generally lower than those of peridotites from Torishima Forearc Seamount,Conical Seamount and South Chamorro Seamount(mostly>25%).All the serpentinites from these four forearc seamounts show strong enrichment in fluid-mobile and lithophile elements(Li,Sr,Pb and U).In details,Hahajima Seamount serpentinites do not have obvious enrichment in Cs and Rb,and display remarkably high abundances of U.These observations indicate that the serpentinization of Hahajima peridotites occurred by addition of seawater or low temperature seawater-derived hydrothermal fluid,without or with little contribution from slab-derived fluids.The geochemical signature of serpentinites from Hahajima Seamount could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of seawater through the mantle wedge.展开更多
基金by the National Natural Science Foundation of China(Grant Nos.41603032,41472051,41802215 and 4176201)Applied Basic Research Foundation of Yunnan Province(Grant No.2017FB075)to ZPX,JW and YPD.
文摘Serpentinized peridotites in the Yangkou(YK),Suoluoshu(SLS) and Hujialin(HJL) areas in the Sulu ultrahighpressure terrane represent the relic of ancient subcontinental lithospheric mantle below the North China Craton.Their protoliths,harzburgite and dunite,were variably hydrated by aqueous fluids released from subducting Yangtze continent.The rocks are enriched in fluid-mobile elements(FME) including Sb(42–333 times the depleted mantle value) and Pb(30–476 times).The degrees of the FME enrichment are comparable to that of the Himalayan forearc serpentinites,and greater than forearc mantle serpentinites from Marianas,suggesting that the degrees of FME enrichment in the forearc serpentinites are greater in continental subduction zones than those in the oceanic subduction zones.Lizardite after olivine in the SLS serpentinite shows higher degrees of enrichment in Sb and As than those for antigorite after both olivine and orthopyroxene in the YK area.The antigorite has highly enriched in Pb,U,Cs,and LREE,but not for the lizardite.The abundance of FME in two different species of serpentine reflects the different temperature of hydration.At temperature lower than 300 ℃,formed lizardite at shallow depths of the mantle wedge incorporates elements that are fluid mobile at low temperatures,such as Sb and As.When the temperature greater than 300 ℃,formed antigorite at a relatively deep mantle wedge incorporate more FME from the subducting continental slab(or fragments),including Pb,U,Cs,LREE as well as Sb and As.The eventual breakdown of antigorite(600–700 ℃) in prograde metamorphism would discharge water as well as FME into the subducting channel and/or the overlying mantle.
基金The National Natural Science Foundation of China under contract Nos 41506047,41876044 and 91858214the Chinese Academy of Sciences’ Strategic Priority Research Program Grant under contract Nos XDB06030103 and XDB06030204
文摘Serpentinites,which contain up to 13 wt%of water,are important reservoirs for chemical recycling in subduction zones.In the past two decades,forearc mantle serpentinites were identified in different locations around the world.Here,we present petrology and whole rock chemistry of ultramafic and mafic rocks dredged from the Hahajima Seamount,which is located 24–40 km west to the junction of the Izu-Bonin Trench and the Mariana Trench.Nearly all the collected samples are extensively hydrated,and olivine grains in ultramafic rocks are replaced by serpentine minerals,with only one sample preserving remaining trace of orthopyroxene.Our new results show that the Hahajima serpentinized peridotite samples are all MgO-rich(~42 wt%),but have low contents in Al2O3,CaO,rare earth and high field strength elements,which is consistent with the overall depleted character of their mantle protoliths.Model calculations indicate that these Hahajima peridotite samples were derived from 10%–25%partial melting of the presumed fertile mantle source,which is generally lower than those of peridotites from Torishima Forearc Seamount,Conical Seamount and South Chamorro Seamount(mostly>25%).All the serpentinites from these four forearc seamounts show strong enrichment in fluid-mobile and lithophile elements(Li,Sr,Pb and U).In details,Hahajima Seamount serpentinites do not have obvious enrichment in Cs and Rb,and display remarkably high abundances of U.These observations indicate that the serpentinization of Hahajima peridotites occurred by addition of seawater or low temperature seawater-derived hydrothermal fluid,without or with little contribution from slab-derived fluids.The geochemical signature of serpentinites from Hahajima Seamount could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of seawater through the mantle wedge.