To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat...To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.展开更多
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th...Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.展开更多
In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the hor...In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.展开更多
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite el...This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.展开更多
A better understanding of two-phase flows with evaporation allows leading to an optimal design of evaporators. For that purpose, numerical simulations are very useful. In this paper, a numerical study has been carried...A better understanding of two-phase flows with evaporation allows leading to an optimal design of evaporators. For that purpose, numerical simulations are very useful. In this paper, a numerical study has been carried out in order to model and simulate the combination of a two-phase flow with evaporation in a vertical tube. The VOF (volume-of-fluid) multiphase flow method and a phase-change model for the mass transfer have been used. For an accurate modeling, the effect of axial conduction has been also taken into account using a conjugate heat transfer model. Since thermal oscillations are undesirable as they can lead to the failure of the tube, flow instabilities have also been analyzed, using FFT (fast Fourier transforms), in order to comprehend their behavior and influence. A control study of the flow instabilities in the tube is also presented. For that purpose tube inlet temperature has been varied using a gain control parameter.展开更多
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration a...Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.展开更多
This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it wa...This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region.展开更多
Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the tech...Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.展开更多
Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further pu...Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.展开更多
In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with...In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.展开更多
The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.I...The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.展开更多
The present work details a numerical simulation of forced convective laminar flow in a channel with a heated obstacle attached to one wall. The second law analysis is employed to investigate the distribution of entrop...The present work details a numerical simulation of forced convective laminar flow in a channel with a heated obstacle attached to one wall. The second law analysis is employed to investigate the distribution of entropy generation in the flow domain to demonstrate the rate of irreversibilities in thermal system. The conjugate problem including the convection heat transfer in the fluid flow and conduction one inside the obstacle is solved numerically to obtain the velocity and temperature fields in both gas and solid phases. To reach this goal, the set of governing equations including momentum and energy equations for the gas phase and conduction equation for the obstacle are solved by CFD technique to determine the hydrodynamic and thermal behaviors of the fluid flow around the obstacle and the temperature distribution in the solid element. An attempt is made to detail the local Nusselt number distribution and mean Nusselt number and also the local entropy generation distribution for the individual exposed obstacle faces. A good consistency is found between the present numerical results with experiment.展开更多
The objective of this study is to evaluate the potential of various grids to satisfactorily simulate the development of a cooling film, using a coupled computation that takes into account the full geometry. Detailed c...The objective of this study is to evaluate the potential of various grids to satisfactorily simulate the development of a cooling film, using a coupled computation that takes into account the full geometry. Detailed computations of a single row of 30 degrees round holes on a flat plate are presented for blowing ratios of 0.764, 1.01 and 1.54. The simulation results are compared well with experimental data. The two-layer model gave more accurate results but consumed much more computational time than the standard wall functions. The k-ε turbulence model with wall functions with appropriate values of y^+ is suitable for practical use. The results show the importance of the conjugate calculation for accurately describing the influence of the heat transfer within the cooling film.展开更多
This article discusses the development of the numerical methods of gas flow coupled with heat transfer,and introduces the fluid net-works method for rapid prediction of the performance of the composite cooling structu...This article discusses the development of the numerical methods of gas flow coupled with heat transfer,and introduces the fluid net-works method for rapid prediction of the performance of the composite cooling structures in turbine blade.The reliability of these methods is verified by comparing experimental data.For a HPT rotor blade,a rapid prediction on the internal cooling structures is first made by using the fluid network analysis,then an assessment of aerodynamic and heat transfer characteristics is conducted.Based on the network analysis results,three ways to improve the design of the cooling structures are tested,i.e.,adjusting the cooling gas flow mass ratios for different inner cooling cavities,reducing the flow resistances of the channel turning structures,and improving the local internal cooling structure geometries with high temperature distribution.Through the verification of full three-dimensional gas/solid/coolant conjugate heat transfer calculation,we conclude that the modified design can make the overall temperature distribution more even by significantly reducing the highest temperature of the blade surface,and reasonably matching the parameters of different coolant inlets.The results show that the proposed calculation methods can remarkably reduce the design cycle of complex turbine blade cooling structure.展开更多
A coupled boundary element method (BEM) and finite difference method (FDM) are applied to solve conjugate heat transfer problem of a two-dimensional air-cooled turbine blade boundary layer. A loosely coupled strat...A coupled boundary element method (BEM) and finite difference method (FDM) are applied to solve conjugate heat transfer problem of a two-dimensional air-cooled turbine blade boundary layer. A loosely coupled strategy is adopted, in which each set of field equations is solved to provide boundary conditions for the other. The Navier-Stokes equations are solved by HIT-NS code. In this code, the FDM is adopted and is used to resolve the convective heat transfer in the fluid region. The BEM code is used to resolve the conduction heat transfer in the solid region. An iterated convergence criterion is the continuity of temperature and heat flux at the fluid-solid interface. The numerical results from the BEM adopted in this paper are in good agreement with the results of analytical solution and the results of commercial code, such as Fluent 6.2. The BEM avoids the complicated mesh needed in other computation method and saves the computation time. The results prove that the BEM adopted in this paper can give the same precision in numerical results with less boundary points. Comparing the conjugate results with the numerical results of an adiabatic wall flow solution, it reveals a significant difference in the distribution of metal temperatures. The results from conjugate heat transfer analysis are more accurate and they are closer to realistic thermal environment of turbines.展开更多
基金Project(2006AA03Z523) supported by the National High-Tech Research and Development Program of ChinaProject(08C26224302178) supported by the Innovation Foundation of Central South University,China
文摘To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.
基金This work was supported by Construction Simulation and Support Optimization of Hydraulic Tunnel Based on Bonded Block-Synthetic Rock Mass Method and Hubei Province Postdoctoral Innovative Practice Position.
文摘Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.3093027)
文摘In piezoceramic ultrasonic devices,the piezoceramic stacks may fail permanently or function improperly if their working temperatures overstep the Curie temperature of the piezoceramic material.While the end of the horn usually serves near the melting point of the molten metal and is enclosed in an airtight chamber,so that it is difficult to experimentally measure the temperature of the transducer and its variation with time,which bring heavy difficulty to the design of the ultrasonic molten metal treatment system.To find a way out,conjugate heat transfer analysis of an ultrasonic molten metal treatment system is performed with coupled fluid and heat transfer finite element method.In modeling of the system,the RNG model and the SIMPLE algorithm are adopted for turbulence and nonlinear coupling between the momentum equation and the energy equation.Forced air cooling as well as natural air cooling is analyzed to compare the difference of temperature evolution.Numerical results show that,after about 350 s of working time,temperatures in the surface of the ceramic stacks in forced air cooling drop about 7 K compared with that in natural cooling.At 240 s,The molten metal surface emits heat radiation with a maximum rate of about 19 036 W/m2,while the heat insulation disc absorbs heat radiation at a maximum rate of about 7922 W/m2,which indicates the effectiveness of heat insulation of the asbestos pad.Transient heat transfer film coefficient and its distribution,which are difficult to be measured experimentally are also obtained through numerical simulation.At 240 s,the heat transfer film coefficient in the surface of the transducer ranges from–17.86 to 20.17 W/(m2?K).Compared with the trial and error method based on the test,the proposed research provides a more effective way in the design and analysis of the temperature control of the molten metal treatment system.
文摘This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.
文摘A better understanding of two-phase flows with evaporation allows leading to an optimal design of evaporators. For that purpose, numerical simulations are very useful. In this paper, a numerical study has been carried out in order to model and simulate the combination of a two-phase flow with evaporation in a vertical tube. The VOF (volume-of-fluid) multiphase flow method and a phase-change model for the mass transfer have been used. For an accurate modeling, the effect of axial conduction has been also taken into account using a conjugate heat transfer model. Since thermal oscillations are undesirable as they can lead to the failure of the tube, flow instabilities have also been analyzed, using FFT (fast Fourier transforms), in order to comprehend their behavior and influence. A control study of the flow instabilities in the tube is also presented. For that purpose tube inlet temperature has been varied using a gain control parameter.
基金The project supported by the National Natural Science Foundation of China (19889209)Russian Foundation for Basic Research (97-02-16943)
文摘Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
基金Sponsored by the National Natural Science Foundation of China( Grant No. 50576017)
文摘This paper studied a certain blade with ten radial cooling holes which employed conjugate heat transfer method. The cooling air entered the cooling channel from the bottom of the blade and went out from the top, it was not ejected into the main flow. This paper used different numerical conditions including different turbulence models,turbulence intensities,thermal conduction coefficients and the influence on fluid property via temperature variation. The temperature distribution and pressure distribution of the blade were compared with experimental data. The results show that the numerical results using different turbulence models are almost identical to experimental data even little deviation occurs at shock wave location. The trends of temperature distribution under different numerical conditions are coincident to experimental data,especially Reynolds stress turbulence model. It can be concluded that anisotropic turbulence models can simulate the transition from laminar to turbulence,and the influence of turbulence intensity on laminar region and transition region is more than that on developed turbulent region.
基金Sponsored by the National Natural Science Foundation of China (Grant No.5047028 and 50476017)
文摘Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.
文摘Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.
文摘In this paper, a 3D model of a flat circuit board with a heat generating electronic chip mounted on it has been studied numerically. The conjugate heat transfer including the conduction in the chip and convection with the surrounding fluid has been investigated numerically. Computational fluid dynamics using the finite volume method has been used for modeling the conjugate heat transfer through the chip and the circuit board. Conjugate heat transfer has broad applications in engineering and industrial applications in design of cooling off electronic components. Effects of various inlet velocities have been studied on the heat transfer variation and temperature of the circuit board. Numerical results show that the temperature of the chip reduces as the velocity of the inlet fluid flow increases.
基金Project supported by the National Natural Science Foundation of China(Nos.11872083,12172017,12202021)。
文摘The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.
文摘The present work details a numerical simulation of forced convective laminar flow in a channel with a heated obstacle attached to one wall. The second law analysis is employed to investigate the distribution of entropy generation in the flow domain to demonstrate the rate of irreversibilities in thermal system. The conjugate problem including the convection heat transfer in the fluid flow and conduction one inside the obstacle is solved numerically to obtain the velocity and temperature fields in both gas and solid phases. To reach this goal, the set of governing equations including momentum and energy equations for the gas phase and conduction equation for the obstacle are solved by CFD technique to determine the hydrodynamic and thermal behaviors of the fluid flow around the obstacle and the temperature distribution in the solid element. An attempt is made to detail the local Nusselt number distribution and mean Nusselt number and also the local entropy generation distribution for the individual exposed obstacle faces. A good consistency is found between the present numerical results with experiment.
文摘The objective of this study is to evaluate the potential of various grids to satisfactorily simulate the development of a cooling film, using a coupled computation that takes into account the full geometry. Detailed computations of a single row of 30 degrees round holes on a flat plate are presented for blowing ratios of 0.764, 1.01 and 1.54. The simulation results are compared well with experimental data. The two-layer model gave more accurate results but consumed much more computational time than the standard wall functions. The k-ε turbulence model with wall functions with appropriate values of y^+ is suitable for practical use. The results show the importance of the conjugate calculation for accurately describing the influence of the heat transfer within the cooling film.
基金supported by the National Natural Science Foundation of the innovative group of China(Grant No.51121004)the National Natural Science Foundation of China(Grant No.50706009)
文摘This article discusses the development of the numerical methods of gas flow coupled with heat transfer,and introduces the fluid net-works method for rapid prediction of the performance of the composite cooling structures in turbine blade.The reliability of these methods is verified by comparing experimental data.For a HPT rotor blade,a rapid prediction on the internal cooling structures is first made by using the fluid network analysis,then an assessment of aerodynamic and heat transfer characteristics is conducted.Based on the network analysis results,three ways to improve the design of the cooling structures are tested,i.e.,adjusting the cooling gas flow mass ratios for different inner cooling cavities,reducing the flow resistances of the channel turning structures,and improving the local internal cooling structure geometries with high temperature distribution.Through the verification of full three-dimensional gas/solid/coolant conjugate heat transfer calculation,we conclude that the modified design can make the overall temperature distribution more even by significantly reducing the highest temperature of the blade surface,and reasonably matching the parameters of different coolant inlets.The results show that the proposed calculation methods can remarkably reduce the design cycle of complex turbine blade cooling structure.
基金National Natural Science Foundation of China (No.50706009)
文摘A coupled boundary element method (BEM) and finite difference method (FDM) are applied to solve conjugate heat transfer problem of a two-dimensional air-cooled turbine blade boundary layer. A loosely coupled strategy is adopted, in which each set of field equations is solved to provide boundary conditions for the other. The Navier-Stokes equations are solved by HIT-NS code. In this code, the FDM is adopted and is used to resolve the convective heat transfer in the fluid region. The BEM code is used to resolve the conduction heat transfer in the solid region. An iterated convergence criterion is the continuity of temperature and heat flux at the fluid-solid interface. The numerical results from the BEM adopted in this paper are in good agreement with the results of analytical solution and the results of commercial code, such as Fluent 6.2. The BEM avoids the complicated mesh needed in other computation method and saves the computation time. The results prove that the BEM adopted in this paper can give the same precision in numerical results with less boundary points. Comparing the conjugate results with the numerical results of an adiabatic wall flow solution, it reveals a significant difference in the distribution of metal temperatures. The results from conjugate heat transfer analysis are more accurate and they are closer to realistic thermal environment of turbines.