期刊文献+
共找到980篇文章
< 1 2 49 >
每页显示 20 50 100
Efficient C-N coupling in electrocatalytic urea generation on copper carbonate hydroxide electrocatalysts
1
作者 Yinuo Wang Yian Wang +11 位作者 Qinglan Zhao Hongming Xu Shangqian Zhu Fei Yang Ernest P.Delmo Xiaoyi Qiu Chi Song Juhee Jang Tiehuai Li Ping Gao MDanny Gu Minhua Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期289-298,I0008,共11页
Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)... Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts. 展开更多
关键词 Copper carbonate hydroxide Co-reduction Urea generation C-N coupling DFT calculation
下载PDF
Simulation Analysis of Torsion Beam Hydroforming Based on the Fluid-Solid Coupling Method 被引量:2
2
作者 Yu Huang Jian Li +2 位作者 Jiachun Yang Yongdong Peng Weixuan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期139-156,共18页
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hyd... Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts.This paper reports a hydraulicforming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings.A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis.The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results.On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method,a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics.The effects of fluid characteristics,shaping pressure,axial feed rate,and friction coefficient on the wall thicknesses of torsions beams during formation were investigated.Fluid movement speed was related to tube deformation.Shaping pressure had a significant effect on rounded corners and straight edges.The axial feed speed was increased,and the uneven distribution of wall thicknesses was effectively improved.Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region,it had a significant influence on a large deformation of wall thickness in the V-shaped area.In this paper,a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam. 展开更多
关键词 fluid-solid coupling Hydraulic expansion Rectangular tube Torsional beam Wall thickness distribution
下载PDF
Theoretically predicted innovative palladium stripe dopingcobalt(111) surface with excellent catalytic performance for carbonmonoxide oxidative coupling to dimethyl oxalate
3
作者 Bingying Han Neng Shi +5 位作者 Mengjie Dong Ye Liu Runping Ye Lixia Ling Riguang Zhang Baojun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期235-243,共9页
Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based c... Pd-based catalysts are extensively employed to catalyze CO oxidative coupling to generate DMO,while the expensive price and high usage of Pd hinder its massive application in industrial production.Designing Pd-based catalysts with high efficiency and low Pd usage as well as expounding the catalytic mechanisms are significant for the reaction.In this study,we theoretically predict that Pd stripe doping Co(111)surface exhibits excellent performance than pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface,and clearly expound the catalytic mechanisms through the density functional theory(DFT)calculation and micro-reaction kinetic model analysis.It is obtained that the favorable reaction pathway is COOCH_(3)-COOCH_(3)coupling pathway over these four catalysts,while the rate-controlling step is COOCH_(3)+CO+OCH_(3)→2COOCH_(3)on Pd stripe doping Co(111)surface,which is different from the case(2COOCH_(3)→DMO)on pure Pd(111),Pd monolayer supporting on Co(111)and Pd single atom doping Co(111)surface.This study can contribute a certain reference value for developing Pd-based catalysts with high efficiency and low Pd usage for CO oxidative coupling to DMO. 展开更多
关键词 CO oxidative coupling to DMO Pd stripe doping Co(111)surface Catalytic mechanism DFT calculation Micro-reaction kinetic model analysis Catalytic performance
下载PDF
1D/3D Coupling Calculation Analysis on Bus Cooling System 被引量:2
4
作者 Kai Shen Feihong Li Jimin Ni 《Energy and Power Engineering》 2014年第14期550-556,共7页
Compared with front engine vehicle, the windward side’s flow field in cooling model of rear engine bus is complicated and it can’t be calculated by means of 1D model. For this problem, this paper has used Star-CCM t... Compared with front engine vehicle, the windward side’s flow field in cooling model of rear engine bus is complicated and it can’t be calculated by means of 1D model. For this problem, this paper has used Star-CCM to build a 3D simulation model of cooling system, engine compartment and complete vehicle. Then, it had a 1D/3D coupling calculation on cooling system with Kuli software. It could be helpful in the optimization design of the flow field of rear engine compartment and optimization match of cooling system. 展开更多
关键词 1D/3D coupling calculation BUS COOLING System REAR ENGINE COMPARTMENT
下载PDF
Implementation of high-fidelity neutronics and thermal–hydraulic coupling calculations in HNET 被引量:2
5
作者 Yan-Ling Zhu Xing-Wu Chen +2 位作者 Chen Hao Yi-Zhen Wang Yun-Lin Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第11期120-132,共13页
To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For si... To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor. 展开更多
关键词 coupling calculation High-fidelity neutronics THERMAL-HYDRAULICS Matrix-free Newton/Krylov method Transient simulation
下载PDF
Close coupling calculations for excitation partial cross sections in Ne-HF collisions
6
作者 余春日 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第6期2097-2102,共6页
This paper reports that an exact quantum close coupling calculation is carried out for rotational excitation in Ne HF collisions on the available anisotropic potential. Partial cross sections are obtained separately a... This paper reports that an exact quantum close coupling calculation is carried out for rotational excitation in Ne HF collisions on the available anisotropic potential. Partial cross sections are obtained separately at the incident energies of 48.35, 75, 120 and 150meV. The reliability of the results is demonstrated by comparison with previously published theoretical findings. Based on the calculations, the effect of the potential energy surface on the excitation partial cross sections is discussed in detail. 展开更多
关键词 close coupling calculation excitation partial cross section Ne HF collision
下载PDF
CALCULATION OF FUEL SLOSHING AND ITS COUPLING VIBRATION WITH A TANK
7
作者 Sun Shuling, Liu Yuqi and Zhou AnningChinese Helicopter Research and Development Institute (CHRADI) Feng Zhenxing, Ye Biquan and Shen ChengwuWuhan University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第3期279-286,共8页
The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E.... The response of fuel-tank-sloshing to aircraft maneuver is a difficult mathematical problem to be solved. Beginning with setting up the mechanical model and the respective mathematical model, this paper uses both F.E. and B.E.M. to imitate the sloshing process. The paper has developed some special techniques to deal with strong nonlinear characteristics, and provided satisfactory numerical results of displacements and stress for low frequency, resonance, high frequency and fuel tank dynamic response characteristics. The program not only assures convergence and stability of the solution, but also has the function of graphic display. It is a valuable technique to deal with the strong nonlinear oscillation of fuel tank with large amplitude and moving boundary condition on free surface. 展开更多
关键词 calculation OF FUEL SLOSHING AND ITS coupling VIBRATION WITH A TANK MODE ITS
下载PDF
A High-Precision Calculation of Bond Length and Spectroscopic Constants of Hg2 Based on the Coupled-Cluster Theory with Spin-Orbit Coupling
8
作者 涂喆研 王文亮 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第6期36-39,共4页
Based on the two-component relativistic effective core potential and matched basis sets cc-pwcvnz-pp (n=Q, 5), combining the completed basis-set extrapolation of electronic correlation energy and the fourth-order po... Based on the two-component relativistic effective core potential and matched basis sets cc-pwcvnz-pp (n=Q, 5), combining the completed basis-set extrapolation of electronic correlation energy and the fourth-order polynomial fitting technique, the bond length and spectroscopic constants of Hg2 are studied by the coupled cluster theory with spin-orbit coupling. Spin-orbit coupling is included in the post Hartree-Fock procedure, i.e., in the coupled- cluster iteration, to obtain more reliable theoretical results. The results show that our theoretical values agree with the experimental values very well and will be helpful to understand the spectral character of Hg2. 展开更多
关键词 HG A High-Precision calculation of Bond Length and Spectroscopic Constants of Hg2 Based on the coupled-Cluster Theory with Spin-Orbit coupling
下载PDF
Application of the generalized quasi-complementary energy principle to the fluid-solid coupling problem
9
作者 梁立孚 刘宗民 郭庆勇 《Journal of Marine Science and Application》 2009年第1期40-45,共6页
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin... The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived. 展开更多
关键词 fluid-solid coupling elasto-dynamics generalized quasi-complementary energy principle dynamic response
下载PDF
Fluid-solid coupling numerical simulation of charge process in variable-mass thermodynamic system 被引量:8
10
作者 胡继敏 金家善 严志腾 《Journal of Central South University》 SCIE EI CAS 2012年第4期1063-1072,共10页
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated... Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase. 展开更多
关键词 steam accumulator variable-mass control valve fluid-solid coupling numerical simulation
下载PDF
Fully fluid-solid coupling dynamic model for seismic response of underground structures in saturated soils 被引量:6
11
作者 Li Liang Jiao Hongyun +1 位作者 Du Xiuli Shi Peixin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期257-268,共12页
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim... The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure. 展开更多
关键词 UNDERGROUND structure saturated SOIL SEISMIC RESPONSE fluid-solid coupling dynamic model user-defined ELEMENT
下载PDF
FLUID-SOLID COUPLING MATHEMATICAL MODEL OF CONTAMINANT TRANSPORT IN UNSATURATED ZONE AND ITS ASYMPTOTICAL SOLUTION 被引量:4
12
作者 薛强 梁冰 +1 位作者 刘晓丽 李宏艳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第12期1475-1485,共11页
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contami... The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport, a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid_solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure, pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure_saturation_permeability in laboratory. 展开更多
关键词 contaminant transport unsaturated zone numerical model fluid-solid coupling interaction asymptotical solution
下载PDF
Fluid-solid coupling model for studying wellbore instability in drilling of gas hydrate bearing sediments 被引量:3
13
作者 程远方 李令东 +1 位作者 S. MAHMOOD 崔青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1421-1432,共12页
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and p... As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS. 展开更多
关键词 gas hydrate bearing sediment wellbore stability fluid-solid coupling mechanical property drilling fluid
下载PDF
Numerical simulation on fault water-inrush based on fluid-solid coupling theory 被引量:3
14
作者 HUANG Han-fu MAO Xian-biao +1 位作者 YAO Bang-hua PU Hai 《Journal of Coal Science & Engineering(China)》 2012年第3期291-296,共6页
About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity... About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water. In this paper, based on the fluid-solid coupling theory, we built the stress-seepage coupling model for rock, then we combined with an example of water-inrush caused by fault, studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics, analyzed the change rule of shear stress, vertical stress, plastic area and water pressure for stope with a fault, and estimated the water-inrush risk at the different distances between working faces and the fault. The numerical simula- tion results indicate that: (1) the water-inrush risk will grow as the decrease of the distance between working face and the fault; (2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush. 展开更多
关键词 FAULT fluid-solid coupling water inrush numerical simulation
下载PDF
An optimized time-adaptive aerothermal coupling calculation method for aerothermal analysis of disc cavity system
15
作者 Shuai BI Junkui MAO +1 位作者 Lei WANG Feng HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期164-177,共14页
In order to further achieve the balance between the calculation accuracy and efficiency of the transient analysis of the aero-engine disc cavity system,an Optimized Time-adaptive Aerother-mal Coupling calculation(OTAC... In order to further achieve the balance between the calculation accuracy and efficiency of the transient analysis of the aero-engine disc cavity system,an Optimized Time-adaptive Aerother-mal Coupling calculation(OTAC)method has been proposed.It combines one-dimensional tran-sient calculation of air system,Conventional Sequence Staggered(CSS)method,Time-adaptive Aerothermal Coupling calculation(TAC)method and differential evolution optimization algorithm to obtain an efficient and high-precision aerothermal coupling calculation method of air system.Considering both the heat conduction in the solid domain and the flow in the fluid domain as unsteady states in the OTAC,the interaction of fluid-solid information within a single coupling time step size was implemented based on the CSS method.Furthermore,the coupling time step size was automatically adjusted with the number of iterations by using the Proportional-Integral-Deri vative(PID)controller.Results show that when compared with the traditional loosely coupling method with a fixed time step size,the computational accuracy and efficiency of the OTAC method are improved by 8.9%and 30%,respectively.Compared with the tight coupling calculation,the OTAC method can achieve a speedup of 1 to 2 orders of magnitude,while the calculation error is maintained within 6.1%. 展开更多
关键词 Air system 1D-3D coupling Conjugate heat transfer Transient calculation Adaptive time step size
原文传递
Fluid-solid coupling numerical simulation of micro-disturbance grouting treatment for excessive deformation of shield tunnel
16
作者 Yanjie Zhang Zheng Cao +1 位作者 Chun Liu Hongwei Huang 《Underground Space》 SCIE EI CSCD 2024年第6期87-100,共14页
Micro-disturbance grouting is a recovery technique to reduce the excessive deformation of operational shield tunnels in urban areas.The grout mass behaves as a fluid in the ground before hardening to form a grout–soi... Micro-disturbance grouting is a recovery technique to reduce the excessive deformation of operational shield tunnels in urban areas.The grout mass behaves as a fluid in the ground before hardening to form a grout–soil mixture,which highlights the necessity of using fluid–solid coupling method in the simulation of grouting process.Within a discrete element modeling environment,this paper proposes a novel fluid-solid coupling method based on the pore density flow calculation.To demonstrate the effectiveness of this method,it is applied to numerical simulation of micro-disturbance grouting process for treatment of large transverse deformation of a shield tunnel in Shanghai Metro,China.The simulation results reveal the mechanism of recovering tunnel convergence by micro-disturbance grouting in terms of compaction and fracture of soil,energy analysis during grouting,and mechanical response of soil-tunnel interaction system.Furthermore,the influence of the three main grouting parameters(i.e.,grouting pressure,grouting distance,and grouting height)on tunnel deformation recovery efficiency is evaluated through parametric analysis.In order to efficiently recover large transverse deformation of shield tunnel in Shanghai Metro,it is suggested that the grouting pressure should be about 0.55 MPa,the grouting height should be in the range of 6.2–7.0 m,and the grouting distance should be in the range of 3.0–3.6 m.The results provide a valuable reference for grouting treatment projects of over-deformed shield tunnel in soft soil areas. 展开更多
关键词 fluid-solid coupling Discrete element method Pore density flow Micro-disturbance grouting Soil-tunnel interaction
原文传递
Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method
17
作者 Xing-Yu Long Yu-Xiang Hu +1 位作者 Bin-Rui Gan Jia-Wen Zhou 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期583-596,共14页
In the context of global warming and intensified human activities,glacier instability in plateau regions has increased,and glacier debris flows have become active,which poses a significant threat to the lives and prop... In the context of global warming and intensified human activities,glacier instability in plateau regions has increased,and glacier debris flows have become active,which poses a significant threat to the lives and property of people and socioeconomic development.The mass movement process of glacier debris flows is extremely complex,so this paper uses the 2018 Sedongpu glacier debris flow event on the Qinghai-Tibet Plateau as an example and applies a numerical simulation method to invert the whole process of mass movement.In view of the interaction between phases in the process of motion,we use the fluid-solid coupling method to describe the mass movement.The granular-flow model and drift-flux model are employed in FLOW3D software to study the mass movement process of glacier debris flows and explore their dynamic characteristics.The results indicate that the glacier debris flow lasted for 700 s,and the movement process was roughly divided into four stages,including initiation,scraping,surging and deposition;the depositional characteristics calculated by the fluid-solid coupling model are consistent with the actual survey results and have good reliability;strong erosion occurs during the mass movement,the clear volume amplification effect,and the first wave climbs 17.8 m across the slope.The fluid-solid coupling method can better simulate glacier debris flows in plateau regions,which is helpful for the study of the mechanism and dynamic characteristics of such disasters. 展开更多
关键词 glacial debris flow Qinghai-Tibet Plateau fluid-solid coupling FLOW3D mass movement depositional characteristics DISASTERS engineering geology
原文传递
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:8
18
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 aluminum holding furnace COMBUSTION heat transfer fluid-solid coupled numerical simulation
下载PDF
Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code 被引量:9
19
作者 ZENG Wei YANG Sheng-qi +1 位作者 TIAN Wen-ling WEN Kai 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1367-1385,共19页
Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass... Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures. 展开更多
关键词 rock mechanics fluid-solid coupling particle flow code (PFC) PERMEABILITY triaxial compression
下载PDF
Fluid solid coupling model based on endochronic damage for roller compacted concrete dam 被引量:4
20
作者 顾冲时 魏博文 +1 位作者 徐镇凯 刘大文 《Journal of Central South University》 SCIE EI CAS 2013年第11期3247-3255,共9页
According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m... According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field. 展开更多
关键词 roller compacted concrete dam endochronic damage fluid-solid coupling analytical model
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部