期刊文献+
共找到607篇文章
< 1 2 31 >
每页显示 20 50 100
A deep-reinforcement learning approach for optimizing homogeneous droplet routing in digital microfluidic biochips
1
作者 Basudev Saha Bidyut Das Mukta Majumder 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第2期1-12,共12页
Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,amo... Over the past two decades,digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis,drug discovery,and immunoassays,among other areas.However,for complex bioassays,finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task.In this study,we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips.The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets.The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer,and the learner fetches the experiences and updates the routing paths.The proposed algorithm was applied to benchmark suitesⅠand Ⅲ as two different test benches,and it achieved significant improvements over state-of-the-art techniques. 展开更多
关键词 Digital microfluidics BIOCHIP Droplet routing fluidic constraints Deep learning Reinforcement learning
下载PDF
Characterization of a novel fluidic friction-reduction tool used in extended-reach well considering periodic particle-laden jet
2
作者 Lu-Bo Tang Xiao-Bin Chen +2 位作者 Wei-Wei Xin Shao-He Zhang Xin-Xin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3700-3711,共12页
Fluidic oscillators(FOs)can be used as an efficient fluidic vibration tool to solve high friction problems in extended-reach wells.However,the complex mechanism of FOs makes the design challenging,and the dynamic eros... Fluidic oscillators(FOs)can be used as an efficient fluidic vibration tool to solve high friction problems in extended-reach wells.However,the complex mechanism of FOs makes the design challenging,and the dynamic erosion behavior inside FOs is still unclear.In this paper,new FOs are proposed and the working characteristics under the influence of periodic particle-laden jets are investigated.Firstly,the results reveal the working mechanism of new FOs,showing that the generation of pressure pulses is closely connected with periodic jet switching and the development of vortices.Secondly,the important performance parameters,i.e.,pressure pulse and oscillation frequency,are extensively studied through numerical simulation and experimental verification.It is found that the performance can be optimized by adjusting the tool structure according to different engineering requirements.Finally,the oscillating solid-liquid two-phase flow inside FO is studied.It is demonstrated that the accumulation of particles leads to a significant reduction in performance.The results also reveal five locations that are susceptible to erosion and the erosion behavior of these locations are studied.It has been shown that the periodic jet causes fluctuations in the amount of erosion at the outlet and splitter.This research can provide valuable references for the design and optimization of vibration friction-reduction tools. 展开更多
关键词 Extended-reach well fluidic oscillator Vibratory tool EROSION Friction reduction
下载PDF
An Investigation of Bubble Motion in the Fluidic Oscillator
3
作者 BIE Haiyan XUE Licheng +3 位作者 LI Yulong LI Yunxia LIN Zixin AN Weizhong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期459-468,共10页
Enhanced gas-liquid mass transfer is significant for the desulfurization and denitration of ship exhaust gases.As a fluid device,the special structure of the fluidic oscillator generates self-excited oscillations that... Enhanced gas-liquid mass transfer is significant for the desulfurization and denitration of ship exhaust gases.As a fluid device,the special structure of the fluidic oscillator generates self-excited oscillations that can effectively enhance the mass transfer process of gas-liquid.But there are few studies on the internal gas-liquid flow.The transportation of individual bubbles in the fluidic oscillator was investigated by a high-speed camera and digital image analysis.The results show that the bubble experienced a significant deceleration process in the chamber region of the fluidic oscillator.In addition,the maximum bubble offset increased with the diameter of the initial bubble.The trajectory of the bubble showed zigzag movement due to the deflecting oscillation of the fluidic oscillator.At the same time,the deformation of the bubble was intensified by the deflecting oscillation.The deformation ratio of the bubble increased with the increase of Reynolds number.By studying the transport process of a single bubble in the fluid oscillator,it is considered that the fluid oscillator has the potential to be a new bubble generator. 展开更多
关键词 fluidic oscillator BUBBLE DECELERATION deformation ratio
下载PDF
A Twin Unidirectional Impulse Turbine for Wave Energy Conversion—Effect of Fluidic Diode on the Performance 被引量:2
4
作者 Shinya Okuhara Manabu Takao +2 位作者 Hideki Sato Akiyasu Takami Toshiaki Setoguchi 《Open Journal of Fluid Dynamics》 2014年第5期433-439,共7页
As a system using a conventional unidirectional air turbine in oscillating water column (OWC) based on a wave energy plant, a twin unidirectional impulse turbine topology has been suggested in previous studies. Howeve... As a system using a conventional unidirectional air turbine in oscillating water column (OWC) based on a wave energy plant, a twin unidirectional impulse turbine topology has been suggested in previous studies. However, the average efficiency of the suggested twin turbine is considerably lower than that of a conventional unidirectional turbine in this topology because reciprocating air flow can’t be rectified adequately by a unidirectional turbine. In order to improve the efficiency, using fluidic diode is discussed. In this study, two different fluidic diodes were discussed by computational fluid dynamics (CFD) and a wind tunnel test. Further, its usefulness is discussed from a view point of the turbine efficiency. The fluidic diode was shown to improve rectification of the topology. However, it needs more improvement in regards to its energy loss in order to enhance the turbine efficiency. 展开更多
关键词 fluidic DIODE TWIN UNIDIRECTIONAL TURBINE Wave Energy Conversion OSCILLATING Water COLUMN
下载PDF
Experimental Investigation of Nonlinear Vibration Isolator with Fluidic Actuators (NLVIFA)
5
作者 S.Sivakumar L.Jayakumar 《Sound & Vibration》 2019年第6期277-296,共20页
This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness(QZS).The existing model of QZS vibration isolator enhances amplitude of vibration an... This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness(QZS).The existing model of QZS vibration isolator enhances amplitude of vibration and attenuating vibration frequencies.This concern with displacement plays a vital role in the performance and instability of oblique spring setup reduces the isolator performance in horizontal non-nominal loads,in this accordance;this paper associates double acting hydraulic cylinder(fluidic actuators in short)in oblique and helical coil spring.An approximate expression of unique analytical relationship between the stiffness of vertical spring and bulk modulus of the fluid is derived for Quasi–Zero Stiffness Non-Linear Vibration Isolator with Fluidic Actuators(NLVIFA in short)system and the force transmissibility is formulated and damping ratio are discussed for characteristic analysis.Modal analysis carried out and compared with analytical results and an experimental prototype is developed and investigated.The performance of the NLVIFA reduces the external embarrassment more at low frequencies and the series of experimental studies showing that the soft nonlinearity causes limitation in the resonant frequency thereupon the isolation will be enhanced and NLVIFA greatly outperform some other type of nonlinear isolators. 展开更多
关键词 Quasi zero stiffness vibration nonlinear isolation fluidic actuator
下载PDF
A Study on Fluidic Diode for Wave Energy Conversion-Effect of Bypass Geometry on the Turbine Performance
6
作者 Keito Matsumoto Manabu Takao +2 位作者 Shinya Okuhara Miah Md. Ashraful Alam Yoichi Kinoue 《Open Journal of Fluid Dynamics》 2020年第3期270-278,共9页
A twin-impulse turbine for bi-directional flow has been developed for wave energy converter. However, the previous studies elucidated that the mean efficiency of the twin turbine is much lower than that of the impulse... A twin-impulse turbine for bi-directional flow has been developed for wave energy converter. However, the previous studies elucidated that the mean efficiency of the twin turbine is much lower than that of the impulse turbine for a unidirectional flow because a portion of airflow passes through the reverse flow turbine whose efficiency is very low. Therefore, a fluidic diode was adopted in the twin-impulse turbine in order to reduce the air flow through the reverse flow turbine. In this study, the rectification effect of the fluidic diode was investigated where a bypass is introduced into a blunt body. A computational fluid dynamics (CFD) analysis was conducted to investigate the effect of fluidic diodes on the turbine performance. In this analysis, RANS equations were used as the governing equations and the standard <em>k-ε</em> model was used as the turbulence model. The computational domain is composed of a circular tube and fluidic diode, and the domain meshed with an approximately 1.5 million mesh elements. As a result, it was found that the rectification effect of the fluidic diode is enhanced by installing a blunt body with a bypass hole of 5<span style="white-space:nowrap;">&deg;</span> taper angle. 展开更多
关键词 fluidic Diode Wave Energy Conversion Twin-Impulse Turbine CFD Analysis
下载PDF
Simulation of the fluidic features for diffuser/nozzle involved in a PZT-based valveless micropump 被引量:2
7
作者 HouWensheng Zheng Xiaolin +4 位作者 Biswajit Das Jiang Yingtao Qian Shizhi Wu Xiaoying Zheng Zhigao 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第1期1-4,共4页
PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids,and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing ... PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids,and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing along a specific direction.In this paper,a numerical model of micropump has been proposed,and the fluidic properties of diffuser/nozzle have been simulated with ANSYS.With the method of finite-element analysis,the increased pressure drop between inlet and outlet of diffuser/nozzle induces the increment of flow rate in both diffuser and nozzle simultaneously,but the increasing rate of diffuser is faster than that of nozzle.The L/R,ratio of L(length of cone pipe) and R(radius of minimal cross section of cone pipe) plays an important role in fluidic performance of diffuser and nozzle as well,and the mean flow rate will decrease with increment of L/R.The mean flow rate reaches its peak value when L/R with the value of 10 regardless the divergence angle of diffuser or nozzle.The simulation results indicate that the fluidic properties of diffuser/nozzle can be defined by its geometric structure,and accordingly determine the efficiency of micropump. 展开更多
关键词 流体系统 模拟 无阀微型泵 散流器 喷嘴
下载PDF
Study on hydrodynamic vibration in fluidic flowmeter 被引量:2
8
作者 WANG Chi-yu ZOU Jun FU Xin YANG Hua-yong 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1422-1428,共7页
The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are... The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed. 展开更多
关键词 液体流量计 水力振动 柯恩达效应 流量测量
下载PDF
Combination of Micro-fluidic Chip with Fluorescence Correlation Spectroscopy for Single Molecule Detection
9
作者 Rui BI Pu Dun ZHANG Chao Qing DONG Ji Cun REN 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第4期521-524,共4页
一种单个分子察觉技术被联合开发作为壁炉隧道 poly (dimethylsiloxane )/glass 微能流动的薄片和荧光关联能谱法(FCS ) 。这个方法成功地被用来在包含荧光黄和玫瑰精绿色 succinimidyl 酉旨的混合决定二个模型部件的比例。
关键词 荧光关联能谱法 微射流芯片 单分子检测 玫瑰精
下载PDF
Research of Confocal Laser Induced Fluorescence Detection System for Micro-fluidic Chip
10
作者 FENG Jin-yuan WANG Xiu-hua ZHANG Hua-feng 《Semiconductor Photonics and Technology》 CAS 2007年第2期104-107,111,共5页
The characteristics such as signal noise ratio(SNR)[1-2] and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced ... The characteristics such as signal noise ratio(SNR)[1-2] and sensitivity of the fluorescence detection system for micro-fluidic chip influence the performance of the whole system extremely. The confocal laser induced fluorescence detection system is presented. Based on the debugging of optical and circuit modules, the results of detecting the samples are given and analyzed theoretically, and the improved project is put forward. 展开更多
关键词 微流控芯片 共焦激光器 诱发荧光探测系统 SNR
下载PDF
Modular Soft Robotic Crawlers Based on Fluidic Prestressed Composite Actuators
11
作者 Zefeng Xu Linkai Hu +2 位作者 Longya Xiao Hongjie Jiang Yitong Zhou 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期694-706,共13页
Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator... Soft robotic crawlers have limited payload capacity and crawling speed.This study proposes a high-performance inchworm-like modular robotic crawler based on fluidic prestressed composite(FPC)actuators.The FPC actuator is precurved and a pneumatic source is used to flatten it,requiring no energy cost to maintain the equilibrium curved shape.Pressurizing and depressurizing the actuators generate alternating stretching and bending motions of the actuators,achieving the crawling motion of the robotic crawler.Multi-modal locomotion(crawling,turning,and pipe climbing)is achieved by modular reconfiguration and gait design.An analytical kinematic model is proposed to characterize the quasi-static curvature and step size of a single-module crawler.Multiple configurations of robotic crawlers are fabricated to demonstrate the crawling ability of the proposed design.A set of systematic experiments are set up and conducted to understand how crawler responses vary as a function of FPC prestrains,input pressures,and actuation frequencies.As per the experiments,the maximum carrying load ratio(carrying load divided by robot weight)is found to be 22.32,and the highest crawling velocity is 3.02 body length(BL)per second(392 mm/s).Multi-modal capabilities are demonstrated by reconfiguring three soft crawlers,including a matrix crawler robot crawling in amphibious environments,and an inching crawler turning at an angular velocity of 2/s,as well as earthworm-like crawling robots climbing a 20 inclination slope and pipe. 展开更多
关键词 Soft robot Soft crawler fluidic prestressed composite Kinematic model Enhanced loading Multi-modal capability
原文传递
Particle focusing by 3D inertial microfluidics 被引量:1
12
作者 Petra Paiè Francesca Bragheri +1 位作者 Dino Di Carlo Roberto Osellame 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期204-211,共8页
Three-dimensional(3D)particle focusing in microfluidics is a fundamental capability with a wide range of applications,such as on-chip flow cytometry,where high-throughput analysis at the single-cell level is performed... Three-dimensional(3D)particle focusing in microfluidics is a fundamental capability with a wide range of applications,such as on-chip flow cytometry,where high-throughput analysis at the single-cell level is performed.Currently,3D focusing is achieved mainly in devices with complex layouts,additional sheath fluids,and complex pumping systems.In this work,we present a compact microfluidic device capable of 3D particle focusing at high flow rates and with a small footprint,without the requirement of external fields or lateral sheath flows,but using only a single-inlet,single-outlet microfluidic sequence of straight channels and tightly curving vertical loops.This device exploits inertial fluidic effects that occur in a laminar regime at sufficiently high flow rates,manipulating the particle positions by the combination of inertial lift forces and Dean drag forces.The device is fabricated by femtosecond laser irradiation followed by chemical etching,which is a simple two-step process enabling the creation of 3D microfluidic networks in fused silica glass substrates.The use of tightly curving three-dimensional microfluidic loops produces strong Dean drag forces along the whole loop but also induces an asymmetric Dean flow decay in the subsequent straight channel,thus producing rapid cross-sectional mixing flows that assist with 3D particle focusing.The use of out-of-plane loops favors a compact parallelization of multiple focusing channels,allowing one to process large amounts of samples.In addition,the low fluidic resistance of the channel network is compatible with vacuum driven flows.The resulting device is quite interesting for high-throughput on-chip flow cytometry. 展开更多
关键词 3D fluidic network 3D particle focusing Dean flow inertial microfluidics
原文传递
Jet sweeping angle control by fluidic oscillators with master-slave designs
13
作者 Ziyan LI Kaiwen ZHOU +1 位作者 Yingzheng LIU Xin WEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期145-162,共18页
The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inhere... The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inherent limitation,that is,the spreading angle cannot be controlled independently,rather by the jet volume flow rate and internal geometry.Accordingly,two types of fluidic oscillators based on the master-slave design are developed in current study to decouple this correlation.In both designs,the master layer inherits the similar oscillation mechanisms of a sweeping jet,and the slave layer resembles a steady jet channel.The difference between the two designs is that Design A has a short diverging exit in the slave layer,but Design B adds a long interaction chamber in the exit channel to intensify flow instability.The external flow fields and governing oscillation properties of these two designs are experimentally explored with time-resolved Particle Image Velocimetry(PIV),while the internal flow dynamics and driving oscillation mechanisms are numerically investigated.By fixing the total volume flow rate,the jet spreading angle of Design A can be increased smoothly from 0°to above 100°by increasing the proportion of master layer’s flow rate from 0 to 100%.For Design B,the control authority of the master layer is significantly enhanced by adding the interaction chamber in the slave layer.In addition,the added chamber causes notable jet oscillation even when the master layer has none input. 展开更多
关键词 Adjustable spreading angle CFD fluidic devices Master-slave fluidic oscillator TR-PIV
原文传递
双轴承旋转喷管型面设计及数值模拟研究
14
作者 李瑶 徐惊雷 +2 位作者 潘睿丰 张玉琪 黄帅 《推进技术》 EI CAS CSCD 北大核心 2024年第5期95-106,共12页
针对短距/垂直起降战斗机高机动飞行的迫切需求及其矢量喷管机械结构复杂笨重的问题,提出了基于轴对称双喉道气动矢量喷管设计的双轴承旋转喷管,通过采用双轴承结构和双喉道气动矢量喷管相结合的方式,减少驱动结构,使喷管能更高效、轻... 针对短距/垂直起降战斗机高机动飞行的迫切需求及其矢量喷管机械结构复杂笨重的问题,提出了基于轴对称双喉道气动矢量喷管设计的双轴承旋转喷管,通过采用双轴承结构和双喉道气动矢量喷管相结合的方式,减少驱动结构,使喷管能更高效、轻便地实现短距/垂直起降,并且赋予了飞行器平飞模态高机动飞行的潜力。基于典型轴对称双喉道气动矢量喷管构型,开展了双轴承旋转喷管的型面设计和运动规律研究,利用数值模拟开展关键设计参数对喷管流场的影响研究,获得喷管的性能变化规律。结果表明,短距/垂直起降模态下,典型构型的双轴承旋转喷管推力矢量角最大可达108°,满足短距/垂直起降飞行器对喷管的要求。凹腔段的长短轴比值对喷管短距/垂直起降模态的性能影响较大,相同落压比条件下,长短轴比值越大,喷管的总推力系数越低,推力矢量角越大,并且推力矢量角最大差值达到41°。本文所提出的双轴承旋转喷管可为未来具备短距/垂直起降、高机动性能的飞行器动力系统提供一种新的解决方案。 展开更多
关键词 短距/垂直起降 双轴承旋转喷管 双喉道气动矢量喷管 气动性能 数值模拟
下载PDF
SU8 etch mask for patterning PDMS and its application to flexible fluidic microactuators 被引量:3
15
作者 Benjamin Gorissen Chris Van Hoof +1 位作者 Dominiek Reynaerts Michael De Volder 《Microsystems & Nanoengineering》 EI 2016年第1期101-105,共5页
Over the past few decades,polydimethylsiloxane(PDMS)has become the material of choice for a variety of microsystem applications,including microfluidics,imprint lithography,and soft microrobotics.For most of these appl... Over the past few decades,polydimethylsiloxane(PDMS)has become the material of choice for a variety of microsystem applications,including microfluidics,imprint lithography,and soft microrobotics.For most of these applications,PDMS is processed by replication molding;however,new applications would greatly benefit from the ability to pattern PDMS films using lithography and etching.Metal hardmasks,in conjunction with reactive ion etching(RIE),have been reported as a method for patterning PDMS;however,this approach suffers from a high surface roughness because of metal redeposition and limited etch thickness due to poor etch selectivity.We found that a combination of LOR and SU8 photoresists enables the patterning of thick PDMS layers by RIE without redeposition problems.We demonstrate the ability to etch 1.5-μm pillars in PDMS with a selectivity of 3.4.Furthermore,we use this process to lithographically process flexible fluidic microactuators without any manual transfer or cutting step.The actuator achieves a bidirectional rotation of 50°at a pressure of 200 kPa.This process provides a unique opportunity to scale down these actuators as well as other PDMS-based devices. 展开更多
关键词 PDMS lithography SU8 etch mask MICROACTUATOR bending actuator fluidic actuator
原文传递
Sprinkler rotation and water application rate for the newly-designed complete fluidic sprinkler and impact sprinkler 被引量:2
16
作者 Frank ADwomoh Yuan Shouqi Li Hong 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第4期38-46,共9页
One important indicator of the good performance of rotating sprinklers is the uniformity of rotation.The objective of this experimental study was to investigate the rotation uniformity and water application rate of th... One important indicator of the good performance of rotating sprinklers is the uniformity of rotation.The objective of this experimental study was to investigate the rotation uniformity and water application rate of the newly designed complete fluidic sprinkler in comparison to the widely used impact sprinkler,with the goal to offer recommendations to improve the fluidic sprinkler’s operation performance.Single-sprinkler water application experiments were conducted in accordance with the American Society of Agricultural and Biological Engineers standard.Sprinkler completion time through the four quadrants of rotation and water delivery in catch cans were measured at different operating pressures for each sprinkler-nozzle size configuration.The capabilities of Matrix Laboratory were employed to simulate the overlap of adjacent quadrants and to visualize the effect of sprinkler rotation speed variation on water application rate.Quadrant completion time variations were small for both impact and fluidic sprinklers.However,variations in completion time through the quadrants were higher for the fluidic sprinkler compared to the impact sprinkler.Relatively higher variations in water application rates were also observed for the fluidic sprinkler.The optimization of the design features of the fluidic component is necessary to improve rotation stability and to minimize variability in water application rate of the fluidic sprinkler.The study significantly highlighted some performance qualities of the complete fluidic sprinkler in comparison to that of the impact sprinkler.The findings of this research will help to improve the efficiency of the new type complete fluidic sprinkler. 展开更多
关键词 sprinkler rotation VARIATION water application rate complete fluidic sprinkler impact sprinkler rotation uniformity
原文传递
Comparison of droplet distributions from fluidic and impact sprinklers 被引量:1
17
作者 Xingye ZHU Shouqi YUAN +1 位作者 Junping LIU Xingfa LIU 《Frontiers of Agricultural Science and Engineering》 2015年第1期53-59,共7页
To adapt to the trend toward low-energy precision irrigation, the droplet distributions for two new prototype sprinklers, outside signal sprinkler(OS) and fluidic sprinkler(FS), were compared with impact sprinkler(IS)... To adapt to the trend toward low-energy precision irrigation, the droplet distributions for two new prototype sprinklers, outside signal sprinkler(OS) and fluidic sprinkler(FS), were compared with impact sprinkler(IS). A laser precipitation monitor was used to measure the droplet distributions. Droplet size and velocity distributions were tested under four operating pressures for nozzles 1.5 m above the ground. For the operating pressures tested, the mean OS, FS and IS droplet diameters ranged from 0 to 3.4, 0 to 3.5, 0 to 4.0 mm, respectively.The mean OS and FS droplet velocities ranged from 0 to6.3 m$s–1, whereas IS ranged from 0 to 6.3 m$s–1. Being gas-liquid fluidic sprinklers, droplet distributions of the OS and FS were similar, although not identical. IS mostly produced a 0.5 mm larger droplet diameter and a 0.5 m$s–1greater velocity than OS and FS. A new empirical equation is proposed for determination of droplet size for OS and FS, which is sufficiently accurate and simple to use. Basic statistics for droplet size and velocity were performed on data obtained by the photographic methods. The mean droplet diameter(arithmetic, volumetric and median)decreased and the mean velocity increased in operating pressure for the three types of sprinkler. 展开更多
关键词 outside signal sprinkler fluidic sprinkler impact sprinkler sprinkler irrigation droplet size droplet velocity
原文传递
Numerical investigation on flow mechanism in a supersonic fluidic oscillator 被引量:1
18
作者 Yongjun SANG Yong SHAN +2 位作者 Jingzhou ZHANG Xiaoming TAN Yuanwei LYU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期214-223,共10页
A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from sub... A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from subsonic to supersonic condition in the mixing chamber of oscillator after the supplied flow pressure increases from 1.1×105 Pa to 5.0×105 Pa.When the supersonic flow is formed inside the oscillator,the wall-attached flow represents expansion wave and compression wave alternately.The oscillating frequency will saturate to a certain value with the increase of supplied pressure.Examination of the internal fluid dynamics indicates that the flow direction inside the FeedBack Channel(FBC)is related to the change of the local pressure at the inlet and the outlet of the feedback channel.The vortices produced in the mixing chamber present different distribution characteristics with the change of the fluid’s direction in the FBC.The sweeping jet is divided into two jets with varying flow rate over time by the splitter.In the end of two channels,two jets are accelerated above sound speed by convergent-divergent nozzle.Therefore,pulsating supersonic jets are produced at two outlets for this type of fluidic oscillator. 展开更多
关键词 Convergent-divergent nozzle Feedback channel Flow characteristics Supersonic flow Supersonic fluidic oscillator
原文传递
In vitro fluidic systems: Applying shear stress on endothelial cells 被引量:1
19
作者 Fanzhe Meng Hong Cheng +3 位作者 Jiayi Qian Xinyuan Dai Yan Huang Yubo Fan 《Medicine in Novel Technology and Devices》 2022年第3期16-28,共13页
Endothelial cells(ECs)that reside on the surface of blood vessels are constantly exposed to mechanical stimulation,including shear stress.Fluid shear stress(FSS)controls multiple physiological processes in ECs,regulat... Endothelial cells(ECs)that reside on the surface of blood vessels are constantly exposed to mechanical stimulation,including shear stress.Fluid shear stress(FSS)controls multiple physiological processes in ECs,regulating various pathways that maintain vascular tone and homeostasis function.The complexity of in vivo biological systems raises a demand for better in vitro techniques,which can generate FSS to closely mimic the cellular microenvironment.Through the rational design and use of flow chamber devices,in vitro fluidic systems are critical for a deeper understanding of endothelial responses to various shear conditions.The paper describes principal types of FSS systems,including functional attributes,development process and recent experiments on ECs.Finally,we prospect their possible contribution in the field of endothelial diseases. 展开更多
关键词 Shear stress Endothelial cell HEMODYNAMICS In vitro fluidic system Cardiovascular disease
原文传递
Design and testing of micro fluidic chemical analysis chip integrated with micro valveless pump
20
作者 FU Xin XIE Haibo YANG Huayong JIA Zhijian FANG Qun 《Science China(Technological Sciences)》 SCIE EI CAS 2005年第3期326-337,共12页
A new structure and working principle of the chip integrated with micro valveless pump for capillary electrophoresis was proposed in this paper. The micro valveless pump with plane structure has advantages of simple s... A new structure and working principle of the chip integrated with micro valveless pump for capillary electrophoresis was proposed in this paper. The micro valveless pump with plane structure has advantages of simple structure, and the process technology is compatible with existing micro chips for capillary electrophoresis. Based upon the mathematical model, simulation study of micro pump was carried out to investigate the influence of structural parameters on flow characteristics, and the performance of the integrated micro pump was also tested with different control parameters. The simulation results agree with the experimental results. Three samples, which are amino acid, fluorescein and buffer solution, have been examined with this chip. The results of the primary experiments showed that the micro valveless pump was promising in the integration and automatization of miniature integrated fluidic systems. 展开更多
关键词 MEMS micro valveless pump micro fluidic chip CFD capillary electrophoresis.
原文传递
上一页 1 2 31 下一页 到第
使用帮助 返回顶部