期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Study on Fluidic Diode for Wave Energy Conversion-Effect of Bypass Geometry on the Turbine Performance 被引量:1
1
作者 Keito Matsumoto Manabu Takao +2 位作者 Shinya Okuhara Miah Md. Ashraful Alam Yoichi Kinoue 《Open Journal of Fluid Dynamics》 2020年第3期270-278,共9页
A twin-impulse turbine for bi-directional flow has been developed for wave energy converter. However, the previous studies elucidated that the mean efficiency of the twin turbine is much lower than that of the impulse... A twin-impulse turbine for bi-directional flow has been developed for wave energy converter. However, the previous studies elucidated that the mean efficiency of the twin turbine is much lower than that of the impulse turbine for a unidirectional flow because a portion of airflow passes through the reverse flow turbine whose efficiency is very low. Therefore, a fluidic diode was adopted in the twin-impulse turbine in order to reduce the air flow through the reverse flow turbine. In this study, the rectification effect of the fluidic diode was investigated where a bypass is introduced into a blunt body. A computational fluid dynamics (CFD) analysis was conducted to investigate the effect of fluidic diodes on the turbine performance. In this analysis, RANS equations were used as the governing equations and the standard <em>k-ε</em> model was used as the turbulence model. The computational domain is composed of a circular tube and fluidic diode, and the domain meshed with an approximately 1.5 million mesh elements. As a result, it was found that the rectification effect of the fluidic diode is enhanced by installing a blunt body with a bypass hole of 5<span style="white-space:nowrap;">&deg;</span> taper angle. 展开更多
关键词 fluidic diode Wave Energy Conversion Twin-Impulse Turbine CFD Analysis
下载PDF
Effect of Fluidic Diode on Performance of Unidirectional Impulse Turbine
2
作者 DODDAMANI Hithaish ABDUS Samad +2 位作者 MANABU Takao SHINYA Okuhara M M ASHRAFUL Alam 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期807-814,共8页
A pair of unidirectional turbines(UT)can operate in oscillatory airflow without additional units.However,this arrangement suffers from poor flow rectification.A fluidic diode(FD)offers variable hydrodynamic resistance... A pair of unidirectional turbines(UT)can operate in oscillatory airflow without additional units.However,this arrangement suffers from poor flow rectification.A fluidic diode(FD)offers variable hydrodynamic resistance based on the flow direction,and this can be coupled with UT to improve flow rectification.In this work,a numerical investigation on the effect of FD with UT is presented using the commercial fluid dynamics software ANSYS Fluent 16.1 with k-ωSST turbulence closure model.Periodic domains of UT and FD are numerically validated individually with experimental results.Later,both are coupled to obtain the combined effect,and these results are compared with the analytical approach.It was observed that coupling FD with UT improved the unit's performance at the lower flow coefficient(<1),but its performance decreased as the flow coefficient increased.Due to the diode's presence,fluid leaving the turbine experiences higher resistance at a higher flow coefficient,which decreases the overall performance of the combined unit. 展开更多
关键词 wave energy oscillating water column unidirectional impulse turbine fluidic diode flow rectification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部