The present work focuses on a numerical investigation of the solids residence time distribution(RTD) and the fluidized structure of a multi-compartment fluidized bed, in which the flow pattern is proved to be close to...The present work focuses on a numerical investigation of the solids residence time distribution(RTD) and the fluidized structure of a multi-compartment fluidized bed, in which the flow pattern is proved to be close to plug flow by using computational fluid dynamics(CFD) simulations. With the fluidizing gas velocity or the bed outlet height rising, the solids flow out of bed more quickly with a wider spread of residence time and a larger RTD variance(σ2). It is just the heterogeneous fluidized structure that being more prominent with the bed height increasing induces the widely non-uniform RTD. The division of the individual internal circulation into double ones improves the flow pattern to be close to plug flow.展开更多
The gas-liquid-solid fluidized bed has emerged in recent years as one of the most promising devices for three-phase operation. Selection and design is one of them in parameter in the performance of three phase system....The gas-liquid-solid fluidized bed has emerged in recent years as one of the most promising devices for three-phase operation. Selection and design is one of them in parameter in the performance of three phase system. This paper focuses on volume fraction and density effect on the phases hold-up in a 3 phase fluidize bed column containing liquid phase with 100 cm height and 20 cm diameter, in this case the solid phase with 0.15, 0.25, 0.35 volume fraction and density 2470, 3000, 4000, 5000 m3 dispersion into liquid phase and the gas phase enter the column through a sparger of 2 cm diameter with 0.02 m/s velocities. The results show as the solid phase volume fraction increases from 0.02 to 0.08 m/s. The gas hold-up decreases and solid hold-up increases. Solid phase density increases, so solid phase hold-up decreases and gas hold-up decreases.展开更多
Euler-Euler two-fluid model is used to simulate the hydrodynamics of gas-solid flow in a bubbling flu- idized bed with Geldert B particles where the solid property is calculated by applying the kinetic theory of granu...Euler-Euler two-fluid model is used to simulate the hydrodynamics of gas-solid flow in a bubbling flu- idized bed with Geldert B particles where the solid property is calculated by applying the kinetic theory of granular flow (KTGF). Johnson and Jackson wall boundary condition is used for the particle phase, and different amount of slip between particle and wall is given by varying the specularity coefficient (φ) from 0 to 1. The simulated particle velocity, granular temperature and particle volume fraction are compared to investigate the effect of different wall boundary conditions on the hydrodynamic behavior, Some of the results are also compared with the available experimental data from the literature. It was found that the model predictions are sensitive to the specularity coefficient. The hydrodynamic behavior deviated sig- nificantly for φ = 0 and φ = 0.01 with maximum deviation found at φ = 0 i.e. free-slip condition. However, the overall bed height predicted by all the conditions is similar.展开更多
In simulations of fluidized beds using computational fluid dynamics (CFD), the description of gas-solid flow hydrodynamics relies on a drag model to account for the momentum transfer between gas and solid phases. Al...In simulations of fluidized beds using computational fluid dynamics (CFD), the description of gas-solid flow hydrodynamics relies on a drag model to account for the momentum transfer between gas and solid phases. Although several studies of drag models have been published, there have been few investigations of the application of lattice Boltzmann method (LBM)-based drag models to bubbling fluidized bed simu- lations. In the present study, a comprehensive comparison of empirical and LBM-based drag models was carried out to assess the performance of these models during simulations of gas-solid flow hydrodynam- ics in a bubbling fluidized bed. A CFD model using the MFIX code based on the Eulerian-Eulerian approach and the kinetic theory of granular flow was used to simulate a 2D bubbling fluidized bed with Geldart B particles. The simulation results were validated by comparison with experimental data. Statistical anal- ysis of the results shows that LBM-based drag models can reliably model gas-solid flow hydrodynamics in a bubbling fluidized bed.展开更多
A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is us...A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle-wall restitution coefficient.The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operatin~ conditions of the CFB riser.展开更多
基金Supported by the National Natural Science Foundation of China(21406237 and 21325628)the State Key Development Program for Basic Research of China(2015CB251402)
文摘The present work focuses on a numerical investigation of the solids residence time distribution(RTD) and the fluidized structure of a multi-compartment fluidized bed, in which the flow pattern is proved to be close to plug flow by using computational fluid dynamics(CFD) simulations. With the fluidizing gas velocity or the bed outlet height rising, the solids flow out of bed more quickly with a wider spread of residence time and a larger RTD variance(σ2). It is just the heterogeneous fluidized structure that being more prominent with the bed height increasing induces the widely non-uniform RTD. The division of the individual internal circulation into double ones improves the flow pattern to be close to plug flow.
文摘The gas-liquid-solid fluidized bed has emerged in recent years as one of the most promising devices for three-phase operation. Selection and design is one of them in parameter in the performance of three phase system. This paper focuses on volume fraction and density effect on the phases hold-up in a 3 phase fluidize bed column containing liquid phase with 100 cm height and 20 cm diameter, in this case the solid phase with 0.15, 0.25, 0.35 volume fraction and density 2470, 3000, 4000, 5000 m3 dispersion into liquid phase and the gas phase enter the column through a sparger of 2 cm diameter with 0.02 m/s velocities. The results show as the solid phase volume fraction increases from 0.02 to 0.08 m/s. The gas hold-up decreases and solid hold-up increases. Solid phase density increases, so solid phase hold-up decreases and gas hold-up decreases.
基金the support of Department of Science&Technology(Govt.of India)through PURSE scheme
文摘Euler-Euler two-fluid model is used to simulate the hydrodynamics of gas-solid flow in a bubbling flu- idized bed with Geldert B particles where the solid property is calculated by applying the kinetic theory of granular flow (KTGF). Johnson and Jackson wall boundary condition is used for the particle phase, and different amount of slip between particle and wall is given by varying the specularity coefficient (φ) from 0 to 1. The simulated particle velocity, granular temperature and particle volume fraction are compared to investigate the effect of different wall boundary conditions on the hydrodynamic behavior, Some of the results are also compared with the available experimental data from the literature. It was found that the model predictions are sensitive to the specularity coefficient. The hydrodynamic behavior deviated sig- nificantly for φ = 0 and φ = 0.01 with maximum deviation found at φ = 0 i.e. free-slip condition. However, the overall bed height predicted by all the conditions is similar.
文摘In simulations of fluidized beds using computational fluid dynamics (CFD), the description of gas-solid flow hydrodynamics relies on a drag model to account for the momentum transfer between gas and solid phases. Although several studies of drag models have been published, there have been few investigations of the application of lattice Boltzmann method (LBM)-based drag models to bubbling fluidized bed simu- lations. In the present study, a comprehensive comparison of empirical and LBM-based drag models was carried out to assess the performance of these models during simulations of gas-solid flow hydrodynam- ics in a bubbling fluidized bed. A CFD model using the MFIX code based on the Eulerian-Eulerian approach and the kinetic theory of granular flow was used to simulate a 2D bubbling fluidized bed with Geldart B particles. The simulation results were validated by comparison with experimental data. Statistical anal- ysis of the results shows that LBM-based drag models can reliably model gas-solid flow hydrodynamics in a bubbling fluidized bed.
文摘A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle-wall restitution coefficient.The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operatin~ conditions of the CFB riser.