A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose w...A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.展开更多
Here we suggest an algorithm for calculation of the process parameters and design of a vertical cooler with inclined, gas-permeable blades and with a vibrating, suspended layer of granules on them (Vibrating Fluidized...Here we suggest an algorithm for calculation of the process parameters and design of a vertical cooler with inclined, gas-permeable blades and with a vibrating, suspended layer of granules on them (Vibrating Fluidized Bed—VFB). The algorithm is based on the use of the equations of heat and material balance, taking into account the influx of moisture into the layer with cold air and dust—as a carryover. Mode entrainment of dust particles and moisture from the VFB is described by using empirical formulas and Π-theorem. To calculate the cooling time of granules a model of the dynamics of a variable mass VFB was built, which linked the geometrical and physical process parameters to a single dependency. An example showed that mass flow of granules of 248 kg/h and a volume flow of air of 646 m<sup>3</sup>/h with temperature of 30℃ to cool the zeolite granules from 110℃ to 42℃ for 49 s required a vertical apparatus of rectangular shape with four chambers and with volume of 0.2 m<sup>3</sup>. A comparative analysis of technological parameters of the projected cooler with the parameters of typical industrial apparatuses showed that for all indicators: the cooling time of granules, the flow rate of gas (air) and the heat flow, a 4-chambered, vertical apparatus of rectangular shape with VFB was the most effective.展开更多
Objective: To investigate the effects of fluidized bed granulation with dextrin on moisture sorption and diffusion of Zexie Decoction granules.Methods: The particle characterization was studied by the particle size, s...Objective: To investigate the effects of fluidized bed granulation with dextrin on moisture sorption and diffusion of Zexie Decoction granules.Methods: The particle characterization was studied by the particle size, scanning electron microscopy(SEM), differential scanning calorimetry(DSC), and Fourier transform infrared(FTIR). The moisture sorption isotherm, equilibrium moisture content(EMC), and moisture diffusion coefficients were determined by using the saturated salt solution method.Results: The particle size increased from 6.04 μm(powder) to 1201.47 μm(granule). The glass transition temperature of dextrin, Zexie Decoction powder, and granule was 107.13 °C, 94.82 °C, and 126.25 °C. As the increase of temperature, the initial rate of moisture sorption become higher. Furthermore, the initial rate of moisture sorption of Zexie Decoction granules was lower than those of powders and dextrin. The EMC and moisture diffusion coefficients were reduced significantly after granulation(P < 0.01). Critical relative humidity and diffusion activation energy of granules were higher than powders.Conclusion: Results suggested that fluidized bed granulation with dextrin could reduce the hygroscopicity of the Zexie Decoction extract powders and inhibited moisture diffusion, which is mainly related to the microstructure reorganization by fluidized bed granulation and anti-plasticizing effects of dextrin.展开更多
Continuous fluidized bed layering granulation with external product classification and a sieve-mill cycle can show instability in the form of self-sustained nonlinear oscillations of the particle size distribution. In...Continuous fluidized bed layering granulation with external product classification and a sieve-mill cycle can show instability in the form of self-sustained nonlinear oscillations of the particle size distribution. In the present study, the stability and bifurcation analysis of this process is presented. The underlying process models explicitly account for compartmentalization of the fluidized bed into a granulation and a drying zone, which is an important feature of many technical processes. Implications for plant operations are discussed with the help of stability diagrams as a function of zone size, residence time within different zones, the addition of external seeds and particular properties of the sieve-mill cycle.展开更多
Fluidized bed granulation is a process by which granules or coated particles are produced in a single piece of equipment by spraying a hinder as solution, suspension, or melt on the fluidized powder bed. Heat and mass...Fluidized bed granulation is a process by which granules or coated particles are produced in a single piece of equipment by spraying a hinder as solution, suspension, or melt on the fluidized powder bed. Heat and mass transfer correlation useful for designing a granulator has been derived based on the equivalence of evaporation rate of the liquid to the heat transferred from hot gas to particles: (m/A)Dp^2λ/Lmf(1-εmf)(Tg-Tl)Kg=hDp/Kg.This equation is applied to data on granulation experiments by different workers to calculate Reynolds number and Nusselt number to obtain a relation between heat and mass transfer from gas to particles during granulation on a logarithmic scale from which the following empirical relation is obtained: Nu=0.0205Re^1.3876 which is comparable to Kothari's correlation Nu=0.03Re^1.3.By using the heat and mass transfer correlation obtained, the entry length, that is the length of granulator up to which effective heat transfer from gas to bed particles takes place, is estimated, which is also validated with experimental study. The correct estimation of entry length is useful in optimal design of a granulator.展开更多
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
基金Supported by the National Natural Science Foundation of China (No.50278036), the Natural Science Foundation of Guangdong Province (No.04105951) and the National High Technology Research and Development Program of China (No.2006AA06Z378).
文摘A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.
文摘Here we suggest an algorithm for calculation of the process parameters and design of a vertical cooler with inclined, gas-permeable blades and with a vibrating, suspended layer of granules on them (Vibrating Fluidized Bed—VFB). The algorithm is based on the use of the equations of heat and material balance, taking into account the influx of moisture into the layer with cold air and dust—as a carryover. Mode entrainment of dust particles and moisture from the VFB is described by using empirical formulas and Π-theorem. To calculate the cooling time of granules a model of the dynamics of a variable mass VFB was built, which linked the geometrical and physical process parameters to a single dependency. An example showed that mass flow of granules of 248 kg/h and a volume flow of air of 646 m<sup>3</sup>/h with temperature of 30℃ to cool the zeolite granules from 110℃ to 42℃ for 49 s required a vertical apparatus of rectangular shape with four chambers and with volume of 0.2 m<sup>3</sup>. A comparative analysis of technological parameters of the projected cooler with the parameters of typical industrial apparatuses showed that for all indicators: the cooling time of granules, the flow rate of gas (air) and the heat flow, a 4-chambered, vertical apparatus of rectangular shape with VFB was the most effective.
基金financial support provided for this research by Tianjin Municipal Education Commission Research Project(Grant No.2017KJ134)
文摘Objective: To investigate the effects of fluidized bed granulation with dextrin on moisture sorption and diffusion of Zexie Decoction granules.Methods: The particle characterization was studied by the particle size, scanning electron microscopy(SEM), differential scanning calorimetry(DSC), and Fourier transform infrared(FTIR). The moisture sorption isotherm, equilibrium moisture content(EMC), and moisture diffusion coefficients were determined by using the saturated salt solution method.Results: The particle size increased from 6.04 μm(powder) to 1201.47 μm(granule). The glass transition temperature of dextrin, Zexie Decoction powder, and granule was 107.13 °C, 94.82 °C, and 126.25 °C. As the increase of temperature, the initial rate of moisture sorption become higher. Furthermore, the initial rate of moisture sorption of Zexie Decoction granules was lower than those of powders and dextrin. The EMC and moisture diffusion coefficients were reduced significantly after granulation(P < 0.01). Critical relative humidity and diffusion activation energy of granules were higher than powders.Conclusion: Results suggested that fluidized bed granulation with dextrin could reduce the hygroscopicity of the Zexie Decoction extract powders and inhibited moisture diffusion, which is mainly related to the microstructure reorganization by fluidized bed granulation and anti-plasticizing effects of dextrin.
文摘Continuous fluidized bed layering granulation with external product classification and a sieve-mill cycle can show instability in the form of self-sustained nonlinear oscillations of the particle size distribution. In the present study, the stability and bifurcation analysis of this process is presented. The underlying process models explicitly account for compartmentalization of the fluidized bed into a granulation and a drying zone, which is an important feature of many technical processes. Implications for plant operations are discussed with the help of stability diagrams as a function of zone size, residence time within different zones, the addition of external seeds and particular properties of the sieve-mill cycle.
文摘Fluidized bed granulation is a process by which granules or coated particles are produced in a single piece of equipment by spraying a hinder as solution, suspension, or melt on the fluidized powder bed. Heat and mass transfer correlation useful for designing a granulator has been derived based on the equivalence of evaporation rate of the liquid to the heat transferred from hot gas to particles: (m/A)Dp^2λ/Lmf(1-εmf)(Tg-Tl)Kg=hDp/Kg.This equation is applied to data on granulation experiments by different workers to calculate Reynolds number and Nusselt number to obtain a relation between heat and mass transfer from gas to particles during granulation on a logarithmic scale from which the following empirical relation is obtained: Nu=0.0205Re^1.3876 which is comparable to Kothari's correlation Nu=0.03Re^1.3.By using the heat and mass transfer correlation obtained, the entry length, that is the length of granulator up to which effective heat transfer from gas to bed particles takes place, is estimated, which is also validated with experimental study. The correct estimation of entry length is useful in optimal design of a granulator.