This paper presents a robust model reference adaptive control scheme to deal with un-certain time delay in the dynamical model of a ?uidized bed combustor for sewage sludge. Thetheoretical analysis and simulation resu...This paper presents a robust model reference adaptive control scheme to deal with un-certain time delay in the dynamical model of a ?uidized bed combustor for sewage sludge. Thetheoretical analysis and simulation results show that the proposed scheme can guarantee not onlystability and robustness, but also the adaptive decoupling performance of the system.展开更多
In the present study reduction of nitrogen oxides using reburning technology, during combustion of sewage sludge (fuel I) and the mixture of sewage sludge, wasted bleaching earth and CaO (fuel II), was carried out. Th...In the present study reduction of nitrogen oxides using reburning technology, during combustion of sewage sludge (fuel I) and the mixture of sewage sludge, wasted bleaching earth and CaO (fuel II), was carried out. The experimental works were conducted in a laboratory-scale fluidized bed reactor (power up to 10 kW) with application of two types of beds: chemically inert bed (sand) and chemically active bed (CaO). The second combustion (reburning) zone in the reactor was formed by dosing into an area above the bed, additional gaseous fuel (propane). Obtained reduction in emissions of nitrogen oxides in both types of beds was at a level 70% - 79%. Additionally bed of CaO has the desulfurizing effect and also reduces the CO concentration in the exhaust fumes. A significant drawback of active bed is the adverse effect on increase of the primary NO which enters the second combustion zone. The result of this fact is higher NOx emission during combustion of the same fuel in bed of CaO in comparison to the combustion of this fuel in the sand bed, when the same maximum degree of reduction of NOx will be obtained for both types of beds.展开更多
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention...Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.展开更多
As incineration provides a relatively safe means of disposal, significant reduction of weight and volume, and energy recovery from the waste, it was adopted by many countries. For the experimental investigation on the...As incineration provides a relatively safe means of disposal, significant reduction of weight and volume, and energy recovery from the waste, it was adopted by many countries. For the experimental investigation on the combustion characteristics of municipal solid waste(MSW), a lab scale fluidized bed facility was constructed. Many kinds of combustion runs were conducted in this fluidized bed combustion facility. The examined parameters were bed temperature(773 to 1143K), form of fuels (scrap or whole), moisture of fuels and so on. Concentration of CO 2,CO,SO 2, O 2 and NOx in the flue gas were monitored and recorded every 5 seconds. The temperatures along the reactor are recorded every 10 seconds. Experimental results were given and analyzed.展开更多
The large-scale integration of new energy generation has put forward higher requirements for the peak-shaving capability of thermal power.The circulating fluidized bed(CFB)depends on the advantages of a wide load adju...The large-scale integration of new energy generation has put forward higher requirements for the peak-shaving capability of thermal power.The circulating fluidized bed(CFB)depends on the advantages of a wide load adjustment range and low cost of pollutant control to become a good peak shaving power supply.However,the large delay and inertia caused by its unique combustion mode make it very difficult to change the load quickly.To further understand the factors that affect the load change of CFB,and explore the method of increasing CFB load change rate,the load change experiment on the combustion side was carried out in the 0.1 MW CFB experiment platform.The influence law of bed material amount and fuel particle size on load change of CFB combustion side was revealed for the first time.The results indicated that the increase of bed material amount was beneficial to improve the load change rate on the combustion side of CFB and reduce the carbon content of fly ash,but had no obvious effect on NO_(x)emission.When the bed height at rest increased from 200 mm to 400 mm,the load change rate of the CFB combustion side load from 50%to 75%increased from 0.78%/min to 1.14%/min,and the carbon content of fly ash at 75%load decreased from 26.6%to 24.9%.In addition,the reduction of fuel particle size positively improved the load change rate on the combustion side of the CFB and reduced NO_(x)emission but had a negative effect on reducing the carbon content of fly ash.When the fuel particle size decreased from 0-1 mm to 0-0.12 mm,the load change rate of CFB combustion side load from 50%to 75%increased from 0.78%/min to 1.09%/min,and the NO_(x)emission and carbon content of fly ash at 75%load decreased from 349.5 mg/m^(3)to 194.1 mg/m^(3)and increased from 26.6%to 31.8%,respectively.展开更多
In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper...In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper, thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3-3.5 min to burn out in FB, but in thermogravimetric analyzer, the time is 20-25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures. Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures, there was interference among the components during fluidized bed combustion.展开更多
基金Supported by National Natural Science Foundation of P.R.China(60374001,60334030)the Chinese Ministry of Education(20030006003)
文摘This paper presents a robust model reference adaptive control scheme to deal with un-certain time delay in the dynamical model of a ?uidized bed combustor for sewage sludge. Thetheoretical analysis and simulation results show that the proposed scheme can guarantee not onlystability and robustness, but also the adaptive decoupling performance of the system.
基金National Key Fundamental Research Program (No.2004CCA07300) National Natural Science Foundation of China (No.20176017)+1 种基金 National Hi-tech Research and Development Program (No.AA514020-02) Anhui Excellent Youth Science and Technology Foundation (No.04044059)
文摘In the present study reduction of nitrogen oxides using reburning technology, during combustion of sewage sludge (fuel I) and the mixture of sewage sludge, wasted bleaching earth and CaO (fuel II), was carried out. The experimental works were conducted in a laboratory-scale fluidized bed reactor (power up to 10 kW) with application of two types of beds: chemically inert bed (sand) and chemically active bed (CaO). The second combustion (reburning) zone in the reactor was formed by dosing into an area above the bed, additional gaseous fuel (propane). Obtained reduction in emissions of nitrogen oxides in both types of beds was at a level 70% - 79%. Additionally bed of CaO has the desulfurizing effect and also reduces the CO concentration in the exhaust fumes. A significant drawback of active bed is the adverse effect on increase of the primary NO which enters the second combustion zone. The result of this fact is higher NOx emission during combustion of the same fuel in bed of CaO in comparison to the combustion of this fuel in the sand bed, when the same maximum degree of reduction of NOx will be obtained for both types of beds.
基金supported by the National Key Research and Development Program of China(2022YFB4100305).
文摘Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.
文摘As incineration provides a relatively safe means of disposal, significant reduction of weight and volume, and energy recovery from the waste, it was adopted by many countries. For the experimental investigation on the combustion characteristics of municipal solid waste(MSW), a lab scale fluidized bed facility was constructed. Many kinds of combustion runs were conducted in this fluidized bed combustion facility. The examined parameters were bed temperature(773 to 1143K), form of fuels (scrap or whole), moisture of fuels and so on. Concentration of CO 2,CO,SO 2, O 2 and NOx in the flue gas were monitored and recorded every 5 seconds. The temperatures along the reactor are recorded every 10 seconds. Experimental results were given and analyzed.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21040100)。
文摘The large-scale integration of new energy generation has put forward higher requirements for the peak-shaving capability of thermal power.The circulating fluidized bed(CFB)depends on the advantages of a wide load adjustment range and low cost of pollutant control to become a good peak shaving power supply.However,the large delay and inertia caused by its unique combustion mode make it very difficult to change the load quickly.To further understand the factors that affect the load change of CFB,and explore the method of increasing CFB load change rate,the load change experiment on the combustion side was carried out in the 0.1 MW CFB experiment platform.The influence law of bed material amount and fuel particle size on load change of CFB combustion side was revealed for the first time.The results indicated that the increase of bed material amount was beneficial to improve the load change rate on the combustion side of CFB and reduce the carbon content of fly ash,but had no obvious effect on NO_(x)emission.When the bed height at rest increased from 200 mm to 400 mm,the load change rate of the CFB combustion side load from 50%to 75%increased from 0.78%/min to 1.14%/min,and the carbon content of fly ash at 75%load decreased from 26.6%to 24.9%.In addition,the reduction of fuel particle size positively improved the load change rate on the combustion side of the CFB and reduced NO_(x)emission but had a negative effect on reducing the carbon content of fly ash.When the fuel particle size decreased from 0-1 mm to 0-0.12 mm,the load change rate of CFB combustion side load from 50%to 75%increased from 0.78%/min to 1.09%/min,and the NO_(x)emission and carbon content of fly ash at 75%load decreased from 349.5 mg/m^(3)to 194.1 mg/m^(3)and increased from 26.6%to 31.8%,respectively.
文摘In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper, thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3-3.5 min to burn out in FB, but in thermogravimetric analyzer, the time is 20-25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures. Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures, there was interference among the components during fluidized bed combustion.