Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characterist...Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.展开更多
A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interfac...A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.展开更多
A wave flume simulator was used to study internal nitrogen release from the surface sediment collected from Taihu Lake, China. Particulate nitrogen concentrations were positively correlated with the concentrations of ...A wave flume simulator was used to study internal nitrogen release from the surface sediment collected from Taihu Lake, China. Particulate nitrogen concentrations were positively correlated with the concentrations of suspended solids, primarily from surface erosion related to the shear stress and duration of wave action. In response to 4 cm- and 10 cm-high wave production representing waves generated in Taihu Lake by gentle and gusty winds, respectively, the mean dynamic release rate of ammonium (NH4+) from the sediment to the overlying water was 1 × 10-3 mg/(m2.s) and the NH4+ concentration in the overlying water increased by 0.016 mg/L, indicating that waves resulting from strong wind can induce the rapid release of dissolved nitrogen from Taihu Lake sediments. The decrease in interstitial NH4+ concentrations at all sediment depths was associated with an increase in NH4+ concentrations in the overlying water by 0.01 mg/L, showing that sediment below the eroded layer was the main source of internal nitrogen release. Changes in the interstitial dissolved oxygen and NH4+ concentrations showed that wave-induced pore water movement can greatly increase the diffusion rate, and that these 15 cm. Diffusion induced by pore water movement sediment layer in Taihu Lake. effects can influence the sediment to a depth of at least may be very important for the formation of an active展开更多
Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mou...Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.展开更多
Autogenic processes are widely found in various sedimentary systems and they play an important role in the depositional evolution and corresponding sedimentary architecture.However,autogenic processes are often affect...Autogenic processes are widely found in various sedimentary systems and they play an important role in the depositional evolution and corresponding sedimentary architecture.However,autogenic processes are often affected by changing allogenic factors and are difficult to be identified and analyzed from modern and ancient records.Through the flume tank experiment under constant boundary conditions,the depositional process,evolution principles,and the sedimentary architecture of a river-dominated delta was presented,and a corresponding sedimentary architecture model was constructed.The evolution of river-dominated delta controlled only by autogenic process is obviously periodic,and each autogenic cycle can be divided into an initial progradational stage,a middle retrogratational stage,and a late aggradational–progradational stage.In the initial progradational stage,one feeder channel incised into the delta plain,mouth bar(s)was formed in front of the channel mouth,and small-scale crevasse splays were formed on the delta plain.In the middle retrogradational stage,the feeder channel was blocked by the mouth bar(s)which grew out of water at the end of the initial stage,and a set of large-scale distributary splay complexes were formed on the delta plain.These distributary splay complexes were retrogradationally overlapped due to the continuous migration of the bifurcation point of the feeder channel.In the late aggradational–progradational stage,the feeder channel branched into several radial distributary channels,overlapped distributary channels were formed on the delta plain,and terminal lobe complexes were formed at the end of distributary channels.The three sedimentary layers formed in the three stages constituted an autogenic succession.The experimental delta consisted of six autogenic depositional successions.Dynamic allocation of accommodation space and the following adaptive sediments filling were the two main driving factors of the autogenic evolution of deltas.展开更多
The volume of fluid (VOF) method is used to set up a wave flume with an absorbing wave maker of cnoidal waves. Based on the transfer function between wave surface and paddle velocity obtained by the shallow water wave...The volume of fluid (VOF) method is used to set up a wave flume with an absorbing wave maker of cnoidal waves. Based on the transfer function between wave surface and paddle velocity obtained by the shallow water wave theory, the velocity boundary condition of an absorbing wave maker is introduced to absorb reflected waves that reach the numerical wave maker. For Hid ranging from 0.1 to 0.59 and T root g/d from 7.9 to 18.3, the parametric studies have been carried out and compared with experiments.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090202)the Key Science and Technology Projects of Transportation Industry(Grant No.2021-MS4-104)the National Key Research and Development Program of China(Grant No.2019YFC1509900).
文摘Fine grains migration is a primary cause of landslides and debris flows.This study investigates the effect of fine-grain migration on slope failure through flume experiments,focusing on the spatiotemporal characteristics and mechanisms of slope stability.A series of artificial rainfall flume experiments with varying rainfall intensities and slopes were conducted using soil samples collected from Wei Jia Gully.The experiments monitored pore-water pressure,grain migration,and failure sequences.Grain-size distribution parameters(μand Dc)were analyzed to understand the migration path and accumulation of fine grains.The experiments reveal that fine-grain migration significantly alters soil structure,leading to random blockage and interconnection of internal pore channels.These changes result in fluctuating pore-water pressure distributions and uneven fine-grain accumulation,critical factors in slope stability.Slope failures occur randomly and intermittently,influenced by fine-grain content in runoff and resulting pore-water pressure variations.This study highlights that fine-grain migration plays a vital role in slope stability,with significant implications for predicting and mitigating slope failures.The stochastic nature of fine-grain migration and its impact on soil properties should be incorporated into predictive models to enhance their accuracy and reliability.
基金The Innovative Research Groups of the National Natural Science Foundation of China under contract No.51021004the National Natural Science Foundation for Youth of China under contract No. 51109018+2 种基金the Open Foundation of Water & Sediment Science and Water Hazard Prevention Hunan Provincial Key Laboratory under contract No. 2011SS05the Open Foundation of Port,Coastal and offshore Engineering Hunan Provincial Key Discipline under contract No. 20110815001the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HSSKLTJU-201208.
文摘A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.
基金Supported by the National Natural Science Foundation of China(Nos.41101458, 40825004,40871095,40801200)the Major Project for National Science and Technology Development(No.2010ZX03006-006)the "100-Talent Project" of Chinese Academy of Sciences,China(No.YOBROB045)
文摘A wave flume simulator was used to study internal nitrogen release from the surface sediment collected from Taihu Lake, China. Particulate nitrogen concentrations were positively correlated with the concentrations of suspended solids, primarily from surface erosion related to the shear stress and duration of wave action. In response to 4 cm- and 10 cm-high wave production representing waves generated in Taihu Lake by gentle and gusty winds, respectively, the mean dynamic release rate of ammonium (NH4+) from the sediment to the overlying water was 1 × 10-3 mg/(m2.s) and the NH4+ concentration in the overlying water increased by 0.016 mg/L, indicating that waves resulting from strong wind can induce the rapid release of dissolved nitrogen from Taihu Lake sediments. The decrease in interstitial NH4+ concentrations at all sediment depths was associated with an increase in NH4+ concentrations in the overlying water by 0.01 mg/L, showing that sediment below the eroded layer was the main source of internal nitrogen release. Changes in the interstitial dissolved oxygen and NH4+ concentrations showed that wave-induced pore water movement can greatly increase the diffusion rate, and that these 15 cm. Diffusion induced by pore water movement sediment layer in Taihu Lake. effects can influence the sediment to a depth of at least may be very important for the formation of an active
基金supported by the Changjiang River Scientific Research Institute(CRSRI)Open Research Program(Grant No.CKWV2017499/KY)the National Natural Science Foundation of China(Grant No.51779280)
文摘Based on the characteristics of hydrodynamics and sediment transport in the bar area in the Modaomen Estuary,a flume experiment was performed to study the evolution of the longitudinal profile of the mouth bar.The mouth bar evolution was investigated under the impacts of floods with different return periods as well as flood-wave interaction.The results showed that floods with different return periods had significant influences on the evolution of the river mouth bar.Particularly on the inner slope of the mouth bar,the sediment was substantially active and moveable.The inner slope and the bar crest tended to be remarkably scoured.The erosion was intensified with the increase of the magnitude of floods.Moreover,the bar crest moved seawards,while the elevation of the bar crest barely changed.Under the flood-wave interaction,a remarkable amount of erosion on the inner and outer slopes of the mouth bar was also found.The seaward displacement of the bar crest under the interaction of floods and waves was less than it was under only the impact of floods,while more deposition was found on the crest of the mouth bar in this case.
基金supported by a National Natural Science Foundation of China(No.41802123)China Postdoctoral Science Foundation funded project(No.2018M630843)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(No.K2017-31)
文摘Autogenic processes are widely found in various sedimentary systems and they play an important role in the depositional evolution and corresponding sedimentary architecture.However,autogenic processes are often affected by changing allogenic factors and are difficult to be identified and analyzed from modern and ancient records.Through the flume tank experiment under constant boundary conditions,the depositional process,evolution principles,and the sedimentary architecture of a river-dominated delta was presented,and a corresponding sedimentary architecture model was constructed.The evolution of river-dominated delta controlled only by autogenic process is obviously periodic,and each autogenic cycle can be divided into an initial progradational stage,a middle retrogratational stage,and a late aggradational–progradational stage.In the initial progradational stage,one feeder channel incised into the delta plain,mouth bar(s)was formed in front of the channel mouth,and small-scale crevasse splays were formed on the delta plain.In the middle retrogradational stage,the feeder channel was blocked by the mouth bar(s)which grew out of water at the end of the initial stage,and a set of large-scale distributary splay complexes were formed on the delta plain.These distributary splay complexes were retrogradationally overlapped due to the continuous migration of the bifurcation point of the feeder channel.In the late aggradational–progradational stage,the feeder channel branched into several radial distributary channels,overlapped distributary channels were formed on the delta plain,and terminal lobe complexes were formed at the end of distributary channels.The three sedimentary layers formed in the three stages constituted an autogenic succession.The experimental delta consisted of six autogenic depositional successions.Dynamic allocation of accommodation space and the following adaptive sediments filling were the two main driving factors of the autogenic evolution of deltas.
基金Trans-Century Training Program Fund for the Talent,Ministry of Education of China
文摘The volume of fluid (VOF) method is used to set up a wave flume with an absorbing wave maker of cnoidal waves. Based on the transfer function between wave surface and paddle velocity obtained by the shallow water wave theory, the velocity boundary condition of an absorbing wave maker is introduced to absorb reflected waves that reach the numerical wave maker. For Hid ranging from 0.1 to 0.59 and T root g/d from 7.9 to 18.3, the parametric studies have been carried out and compared with experiments.