期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulated photo-degradation of dissolved organic matter in lakes revealed by three-dimensional excitation-emission matrix with regional integration and parallel factor analysis 被引量:3
1
作者 Jin Zhang Fanhao Song +5 位作者 Tingting Li Kefu Xie Huiying Yao Baoshan Xing Zhongyu Li Yingchen Bai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期310-320,共11页
Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with t... Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM. 展开更多
关键词 Fluorescent dissolved organic matter PHOTO-DEGRADATION fluorescence regional integration Parallel factor analysis Three-dimensional excitationemission matrix Multi-order kinetic models
原文传递
Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value 被引量:4
2
作者 Yun Zhou Siqing Xia +3 位作者 Binh T. Nguyen Min Long Jiao Zhang Zhiqiang Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第1期79-87,共9页
The quantification and effects of system pH value on the interactions between Pb(II) and the biopolymer in activated sludge were investigated. The biopolymer had two protein-like fluorescence peaks (Ex/Em = 280 nm1... The quantification and effects of system pH value on the interactions between Pb(II) and the biopolymer in activated sludge were investigated. The biopolymer had two protein-like fluorescence peaks (Ex/Em = 280 nm1326-338 nm for peak A; Ex/Em = 220-230 nm/324-338 nm for peak B). The fluorescence intensities of peak B were higher than those of peak A. The fluorophores of both peaks could be largely quenched by Pb(ll), and the quencher dose for peak B was about half of that for peak A. The modified Stern-Volmer equation well depicted the fluorescence quenching titration. The quenching constant (Ka) values for both peaks decreased with rising system pH value, and then sharply decreased under alkaline conditions. It could be attributed to that the alkaline conditions caused the reduction of available Pb(II) due to the occurrence of Pb(OH)2 sediments. The Ka values of peak B were bigger than those for peak A at the same system pH values. Accordingly, the aromatic proteins (peak B) played a key role in the interactions between metal ions and the biopolymer. 展开更多
关键词 Metal ions BIOPOLYMER Activated sludge Three-dimensional excitation emission matrix (3D-EEM) fluorescence regional integration (FRI) technique Quantification
原文传递
Magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering(MPEOD) of activated sludge: Role and behavior of moisture and organics 被引量:3
3
作者 Xinxin Guo Xu Qian +1 位作者 Yili Wang Huaili Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第12期147-158,共12页
In this study, a magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering(MPEOD) process with magnetic micro-particle conditioning–drainage under gravity–mechanical compression–electr... In this study, a magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering(MPEOD) process with magnetic micro-particle conditioning–drainage under gravity–mechanical compression–electrical compression(MMPC–DG–MC–EC) stages was established to study the distribution and migration of water, extracellular polymeric substances(EPS), and other organic matter in the activated sludge(AS) matrix at each stage.Results showed that the MPEOD process could attain 53.52% water content(WC) in dewatered AS with bound water(BW) and free water(FW) reduction rates of 82.97% and 99.67%,respectively. The coagulation and time-delayed magnetic field effects of magnetic microparticles(MMPs) along the MMPC–DG–MC stages initiated the transformation of partial BW to FW in AS. EC had a coupling driving effect of electro-osmosis and pressure on BW, and the changes in pH and temperature at EC stage induced the aggregation of AS flocs and the release of partial BW. Additionally, MMPs dosing further improved the dewatering performance of AS by acting as skeleton builders to provide water passages. Meanwhile, MMPs could disintegrate sludge cells and EPS fractions, thereby reducing tryptophan-like protein and byproduct-like material concentrations in LB-EPS as well as protein/polysaccharide ratio in AS matrix, which could improve AS filterability. At EC stage, the former four Ex/Em regions of fluorescence regional integration analysis for EPS were obviously reduced, especially the protein-like substances in LB-and TB-EPS, which contributed to improvement of AS dewaterability. 展开更多
关键词 Activated sludge Magnetic micro-particle Pressurized vertical electro-osmotic dewatering Water distribution Extracellular polymeric substance fluorescence regional integration analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部