Ultrafine NdFeB waste is a relatively clean waste produced during NdFeB magnet processing.Fluorinecontaining wastewater is a common type of industrial wastewater,such as stainless steel pickling wastewater.In this wor...Ultrafine NdFeB waste is a relatively clean waste produced during NdFeB magnet processing.Fluorinecontaining wastewater is a common type of industrial wastewater,such as stainless steel pickling wastewater.In this work,rare earth element neodynium was recycled from ultrafine NdFeB waste by capturing fluorine ions in the fluorine-containing wastewater and prepared into neodynium oxyfluoride.The reaction process was investigated through UV-Vis-NIR,thermogravimetry/differential thermogravimetry(TG/DTG),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The neodymium hydroxide in the ultrafine NdFeB waste reacted with fluorine ions to form Nd(OH)_(2) F,and Nd(OH)_(2) F was then transformed into neodymium oxyfluoride after decomposition.The formed neodymium oxyfluoride is found to be particles with rhombohedral structure and a particle size of around 50 nm.The reaction kinetics of forming Nd(OH)_(2) F was investigated.The reaction kinetic equation was established and the reaction activation energy was calculated.The effect of fluorine ion concentration on the reaction rate and products was evaluated.The results show that the reaction rate increases with the increase of fluorine ion concentration in the range of 0.01-1.5 mol/L,but it has little effect.In addition,the fluorine ion concentration affects the crystallinity of formed neodymium oxyfluoride.The recycling process not only realizes the sustainable utilization of rare earths,but also reduces the concentration of fluorine ions in the fluorine-containing wastewater,achieving two goals with one stone.展开更多
The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate le...The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate leakage and breakdown voltage show that each experiences a significant change in a short time stress, and then keeps unchangeable. The migration phenomenon of fluorine ions is further validated by the electron redistribution and breakdown voltage enhancement after off-state stress. These results suggest that the low power fluorine implant ion stays in an unstable state. It causes the electrical properties of AlGaN/GaN HEMT to present early degradation. A new migration and degradation mechanism of the low power fluorine implant ion under the off-stress electrical stress is proposed. The low power fluorine ions would drift at the beginning of the off-state stress, and then accumulate between gate and drain nearby the gate side. Due to the strong electronegativity of fluorine, the accumulation of the front fluorine ions would prevent the subsequent fluorine ions from drifting, thereby alleviating further the degradation of AlGaN/GaN HEMT electrical properties.展开更多
基金Project supported by the Natural Science Foundation of Inner Mongolia(2020BS05033,2020MS05012)Inner Mongolia Major Basic Research Open Project(0406091701)。
文摘Ultrafine NdFeB waste is a relatively clean waste produced during NdFeB magnet processing.Fluorinecontaining wastewater is a common type of industrial wastewater,such as stainless steel pickling wastewater.In this work,rare earth element neodynium was recycled from ultrafine NdFeB waste by capturing fluorine ions in the fluorine-containing wastewater and prepared into neodynium oxyfluoride.The reaction process was investigated through UV-Vis-NIR,thermogravimetry/differential thermogravimetry(TG/DTG),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The neodymium hydroxide in the ultrafine NdFeB waste reacted with fluorine ions to form Nd(OH)_(2) F,and Nd(OH)_(2) F was then transformed into neodymium oxyfluoride after decomposition.The formed neodymium oxyfluoride is found to be particles with rhombohedral structure and a particle size of around 50 nm.The reaction kinetics of forming Nd(OH)_(2) F was investigated.The reaction kinetic equation was established and the reaction activation energy was calculated.The effect of fluorine ion concentration on the reaction rate and products was evaluated.The results show that the reaction rate increases with the increase of fluorine ion concentration in the range of 0.01-1.5 mol/L,but it has little effect.In addition,the fluorine ion concentration affects the crystallinity of formed neodymium oxyfluoride.The recycling process not only realizes the sustainable utilization of rare earths,but also reduces the concentration of fluorine ions in the fluorine-containing wastewater,achieving two goals with one stone.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.61334002) and the National Natural Science Foundation of China(Grant Nos.61604114,61404097,and 61504099)
文摘The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate leakage and breakdown voltage show that each experiences a significant change in a short time stress, and then keeps unchangeable. The migration phenomenon of fluorine ions is further validated by the electron redistribution and breakdown voltage enhancement after off-state stress. These results suggest that the low power fluorine implant ion stays in an unstable state. It causes the electrical properties of AlGaN/GaN HEMT to present early degradation. A new migration and degradation mechanism of the low power fluorine implant ion under the off-stress electrical stress is proposed. The low power fluorine ions would drift at the beginning of the off-state stress, and then accumulate between gate and drain nearby the gate side. Due to the strong electronegativity of fluorine, the accumulation of the front fluorine ions would prevent the subsequent fluorine ions from drifting, thereby alleviating further the degradation of AlGaN/GaN HEMT electrical properties.