Mica glass-ceramics were prepared by pressureless sintering with a phlogopite and various additives as raw materials. The effects of CaF2 content, Li2O content, ZrO2 content, and sintering temperature on the microstru...Mica glass-ceramics were prepared by pressureless sintering with a phlogopite and various additives as raw materials. The effects of CaF2 content, Li2O content, ZrO2 content, and sintering temperature on the microstructure and mechanical properties of the mica glass-ceramics were investigated by X-ray diffraction, scanning electron microscopy, and mechanical testing, respectively. The results show that the additive of ZrO2 has the best reinforcing effect on the flexural strength of the mica glass-ceramics. The smaller powder particles and the larger forming pressure result in the larger bulk density of the mica glass-ceramics samples. The main crystallite phases of samples with ZrO2 as additive were phlogopite and quartz with sintering temperature lower than 1120 ℃. The crystal phase of glass ceramics appeared fiberform and cross arranges with good lap. The highest value of flexural strength, 63.7 MPa, was shown on sample with 10wt% ZrO2 as additive and sintering temperature of 1120 ℃.展开更多
The effects of ZrO2 on the crystallinity of mica and microstructure of a machina- ble glassceramic were studied. It was found that ZrO2 is an effective nucleation agent in mica glass- ceramics. Stabilized by Ca2+, a l...The effects of ZrO2 on the crystallinity of mica and microstructure of a machina- ble glassceramic were studied. It was found that ZrO2 is an effective nucleation agent in mica glass- ceramics. Stabilized by Ca2+, a lot of t--ZrO2 particles precipitate from ZrO2-mica glass-ceramics. The ZrO2 particles can effectively limit the growth of mica crystal and benefit the mechanical properties of glass-ceramics.展开更多
Significant developments have been made in the past few decades for lanthanide(Ln)ions doped fluorosilicate glass-ceramics(Flusi-GCs).As novel generation of luminescence materials with a wide range of applications,Flu...Significant developments have been made in the past few decades for lanthanide(Ln)ions doped fluorosilicate glass-ceramics(Flusi-GCs).As novel generation of luminescence materials with a wide range of applications,Flusi-GCs as a single host combine the advantages of glass and ceramics/crystals as well as fluorides and silicates.In this review,the chemical design principles and experimental procedures of Flusi-GCs are summarized in detail.Flusi-GCs are categorized as those containing PbxCd_(1-x)F_(2),RF_(3)(R=Y,La,Gd),MF_(2)(M=Ca,Sr,Ba),xMF_(2)-yRF_(3)(R=Y,La-Lu),mAF-nRF_(3)(A=Li,Na,K),KTF_(3)(T=Zn,Mn)and K2 SiF6 nanocrystals(NCs).Theoretical breakthroughs mainly by molecular dynamic(MD)simulation have been recapitulated as efficient routes for composition-design,nano-crystallization-prediction,and performance-optimization of Flusi-GCs containing target fluoride NCs.Essential research progresses pertaining photonic applications have been made in random lasers,communication amplifiers,optical fibers,spectral converters,white light-emitting-diodes(WLEDs),and thermal sensors.In the end,we propose three future research directions for Flusi-GCs.展开更多
文摘Mica glass-ceramics were prepared by pressureless sintering with a phlogopite and various additives as raw materials. The effects of CaF2 content, Li2O content, ZrO2 content, and sintering temperature on the microstructure and mechanical properties of the mica glass-ceramics were investigated by X-ray diffraction, scanning electron microscopy, and mechanical testing, respectively. The results show that the additive of ZrO2 has the best reinforcing effect on the flexural strength of the mica glass-ceramics. The smaller powder particles and the larger forming pressure result in the larger bulk density of the mica glass-ceramics samples. The main crystallite phases of samples with ZrO2 as additive were phlogopite and quartz with sintering temperature lower than 1120 ℃. The crystal phase of glass ceramics appeared fiberform and cross arranges with good lap. The highest value of flexural strength, 63.7 MPa, was shown on sample with 10wt% ZrO2 as additive and sintering temperature of 1120 ℃.
基金the Trans-Century Training Program Foundation for the Talents by the Ministry of Education of China the National Natural Science Foundation of China (No. 50172010) and Natural Science Foundation of Liaoning Province (No. 20
文摘The effects of ZrO2 on the crystallinity of mica and microstructure of a machina- ble glassceramic were studied. It was found that ZrO2 is an effective nucleation agent in mica glass- ceramics. Stabilized by Ca2+, a lot of t--ZrO2 particles precipitate from ZrO2-mica glass-ceramics. The ZrO2 particles can effectively limit the growth of mica crystal and benefit the mechanical properties of glass-ceramics.
基金Project supported by National Natural Science Foundation of China(51872255,51672243)。
文摘Significant developments have been made in the past few decades for lanthanide(Ln)ions doped fluorosilicate glass-ceramics(Flusi-GCs).As novel generation of luminescence materials with a wide range of applications,Flusi-GCs as a single host combine the advantages of glass and ceramics/crystals as well as fluorides and silicates.In this review,the chemical design principles and experimental procedures of Flusi-GCs are summarized in detail.Flusi-GCs are categorized as those containing PbxCd_(1-x)F_(2),RF_(3)(R=Y,La,Gd),MF_(2)(M=Ca,Sr,Ba),xMF_(2)-yRF_(3)(R=Y,La-Lu),mAF-nRF_(3)(A=Li,Na,K),KTF_(3)(T=Zn,Mn)and K2 SiF6 nanocrystals(NCs).Theoretical breakthroughs mainly by molecular dynamic(MD)simulation have been recapitulated as efficient routes for composition-design,nano-crystallization-prediction,and performance-optimization of Flusi-GCs containing target fluoride NCs.Essential research progresses pertaining photonic applications have been made in random lasers,communication amplifiers,optical fibers,spectral converters,white light-emitting-diodes(WLEDs),and thermal sensors.In the end,we propose three future research directions for Flusi-GCs.