In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior mi saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases o...In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior mi saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases of the media into the model. The non-associated Drucker-Prager criterion to describe nonlinear constitutive behavior of pressure dependent elasto-plasticity for the media is particularly considered. With no consideration of compressibility of solid grains and the pore fluid, the discontinuity and instability of the wave propagation in saturated porous media axe analyzed for the plane strain problems in detail. The critical conditions of stationary discontinuity and flutter instability in the wave propagation are given. The results and conclusions obtained by the present work will provide some bases or clues for overcoming the difficulties in numerical modeling of wave propagation in the media subjected to dynamic loading.展开更多
基金The project supported by the National Natural Science Foundation of China (19832010)
文摘In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior mi saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases of the media into the model. The non-associated Drucker-Prager criterion to describe nonlinear constitutive behavior of pressure dependent elasto-plasticity for the media is particularly considered. With no consideration of compressibility of solid grains and the pore fluid, the discontinuity and instability of the wave propagation in saturated porous media axe analyzed for the plane strain problems in detail. The critical conditions of stationary discontinuity and flutter instability in the wave propagation are given. The results and conclusions obtained by the present work will provide some bases or clues for overcoming the difficulties in numerical modeling of wave propagation in the media subjected to dynamic loading.