To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal...To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.展开更多
Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory...Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reduetive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result.展开更多
A new feedback control method is derived based on the lattice hydrodynamic model in a single lane. A signal based on the double flux difference is designed in the lattice hydrodynamic model to suppress the traffic jam...A new feedback control method is derived based on the lattice hydrodynamic model in a single lane. A signal based on the double flux difference is designed in the lattice hydrodynamic model to suppress the traffic jam. The stability of the model is analyzed by using the new control method. The advantage of the new model with and without the effect of double flux difference is explored by the numerical simulation. The numerical simulations demonstrate that the traffic jam can be alleviated by the control signal.展开更多
With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probab...With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probability characterized by the Mgebraic sum φ and the difference θ of two magnetic fluxes, and particularly a general rule of AB oscillation period depending on the ratio of integer quantum numbers of the fluxes. A parity effect is observed, showing the asymmetric AB oscillations with respect to the even and odd quantum numbers of the total flux in antiparallel AB interferometers. It is also shown that the AB flux can shift the Fano resonance peaks of the transmission spectrum.展开更多
This paper presents a new version of the upwind compact finite difference scheme for solving the incompressible Navier-Stokes equations in generalized curvilinear coordinates.The artificial compressibility approach is...This paper presents a new version of the upwind compact finite difference scheme for solving the incompressible Navier-Stokes equations in generalized curvilinear coordinates.The artificial compressibility approach is used,which transforms the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux difference splitting can be applied.The convective terms are approximated by a third-order upwind compact scheme implemented with flux difference splitting,and the viscous terms are approximated by a fourth-order central compact scheme.The solution algorithm used is the Beam-Warming approximate factorization scheme.Numerical solutions to benchmark problems of the steady plane Couette-Poiseuille flow,the liddriven cavity flow,and the constricting channel flow with varying geometry are presented.The computed results are found in good agreement with established analytical and numerical results.The third-order accuracy of the scheme is verified on uniform rectangular meshes.展开更多
基金Project supported by the National Key Project(No.GJXM92579)the Defense Industrial Technology Development Program(No.C1520110002)the State Administration of Science,Technology and Industry for National Defence,China。
文摘To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.
基金supported by the National Natural Science Foundation of China (Grant Nos.70631001 and 71071012)the Fundamental Research Funds for the Central Universities (Grant Nos.2009JBM045 and 2011YJS235)
文摘Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reduetive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11702153,71571107,and 61773290)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY18A010003)the K.C.Wong Magna Fund in Ningbo University,China
文摘A new feedback control method is derived based on the lattice hydrodynamic model in a single lane. A signal based on the double flux difference is designed in the lattice hydrodynamic model to suppress the traffic jam. The stability of the model is analyzed by using the new control method. The advantage of the new model with and without the effect of double flux difference is explored by the numerical simulation. The numerical simulations demonstrate that the traffic jam can be alleviated by the control signal.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475053).
文摘With the help of nonequilibrium Green's function technique, the electronic transport through series Aharonov-Bohm (AB) interferometers is investigated. We obtain the AB interference pattern of the transition probability characterized by the Mgebraic sum φ and the difference θ of two magnetic fluxes, and particularly a general rule of AB oscillation period depending on the ratio of integer quantum numbers of the fluxes. A parity effect is observed, showing the asymmetric AB oscillations with respect to the even and odd quantum numbers of the total flux in antiparallel AB interferometers. It is also shown that the AB flux can shift the Fano resonance peaks of the transmission spectrum.
基金This work was supported by Natural Science Foundation of China(G10476032,G10531080)state key program for developing basic sciences(2005CB321703).
文摘This paper presents a new version of the upwind compact finite difference scheme for solving the incompressible Navier-Stokes equations in generalized curvilinear coordinates.The artificial compressibility approach is used,which transforms the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux difference splitting can be applied.The convective terms are approximated by a third-order upwind compact scheme implemented with flux difference splitting,and the viscous terms are approximated by a fourth-order central compact scheme.The solution algorithm used is the Beam-Warming approximate factorization scheme.Numerical solutions to benchmark problems of the steady plane Couette-Poiseuille flow,the liddriven cavity flow,and the constricting channel flow with varying geometry are presented.The computed results are found in good agreement with established analytical and numerical results.The third-order accuracy of the scheme is verified on uniform rectangular meshes.