A new developed technology for extracting alumina from coal fly ash was studied in this paper. In this technology, coal fly ash is first sintered with ammonium sulfate, forming ammonium aluminum sulfate in the resulta...A new developed technology for extracting alumina from coal fly ash was studied in this paper. In this technology, coal fly ash is first sintered with ammonium sulfate, forming ammonium aluminum sulfate in the resultant product, where alumina can be easily leached without using any strong acid or alkali. The products obtained under different sintering conditions were characterized by X-ray diffractometry. Alumina extraction efficiency of these products was also investigated. The results show that the sintering temperature and time substantially influence the phase composition and alumina extraction efficiency of sintered products, while the heating rate has little influence. The optimal sintering condition is 400 °C for 3 h in air with a heating rate of 6 °C·min-1.Under the optimal sintering condition, the alumina extraction efficiency from as-sintered coal fly ash can reach 85% or more.展开更多
By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was develop...By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was developed for alumina extraction from the DSCFA with the lime sintering process.Ca/(SiO2+TiO2)molar ratio,and NaO/Al2O3 molar ratio,sintering time,and temperature were the most significant parameters impacting on the aluminum extraction efficiency.The optima aluminum extraction efficiency was obtained under conditions of Ca/(SiO2+TiO2)molar ratio of 2.0,NaO/Al2O3 molar ratio of 0.98,and sintering at 1 200 ℃for 60 min.Astandard industrial dissolution method was used under conditions of caustic ratio(αk=n(NaO)/n(Al2O3)of 2.0,Al2O3 concentration of 50 g/L,sodium hydroxide concentration(Nk)of 60.78 g/L,Na2CO3 concentration of 10 g/L,temperature of 85℃, and dissolution duration of 10 min.The final aluminum extraction efficiency was 90%.展开更多
基金Supported by the Special Project for High-end CNC Machine Tools and Basic Manufacturing Equipment of China(2012ZX04007-021)Liaoning Excellent Talents in University(LR2014004)the National Natural Science Foundation of China(51004071,50804031)
文摘A new developed technology for extracting alumina from coal fly ash was studied in this paper. In this technology, coal fly ash is first sintered with ammonium sulfate, forming ammonium aluminum sulfate in the resultant product, where alumina can be easily leached without using any strong acid or alkali. The products obtained under different sintering conditions were characterized by X-ray diffractometry. Alumina extraction efficiency of these products was also investigated. The results show that the sintering temperature and time substantially influence the phase composition and alumina extraction efficiency of sintered products, while the heating rate has little influence. The optimal sintering condition is 400 °C for 3 h in air with a heating rate of 6 °C·min-1.Under the optimal sintering condition, the alumina extraction efficiency from as-sintered coal fly ash can reach 85% or more.
基金Project(YFZX(0804))supported by Science Foundation of the Pingshuo Coal Industry Company,China
文摘By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was developed for alumina extraction from the DSCFA with the lime sintering process.Ca/(SiO2+TiO2)molar ratio,and NaO/Al2O3 molar ratio,sintering time,and temperature were the most significant parameters impacting on the aluminum extraction efficiency.The optima aluminum extraction efficiency was obtained under conditions of Ca/(SiO2+TiO2)molar ratio of 2.0,NaO/Al2O3 molar ratio of 0.98,and sintering at 1 200 ℃for 60 min.Astandard industrial dissolution method was used under conditions of caustic ratio(αk=n(NaO)/n(Al2O3)of 2.0,Al2O3 concentration of 50 g/L,sodium hydroxide concentration(Nk)of 60.78 g/L,Na2CO3 concentration of 10 g/L,temperature of 85℃, and dissolution duration of 10 min.The final aluminum extraction efficiency was 90%.