The paper presents a new protocol called Link Stability and Transmission Delay Aware(LSTDA)for Flying Adhoc Network(FANET)with a focus on network corridors(NC).FANET consists of Unmanned Aerial Vehicles(UAVs)that face...The paper presents a new protocol called Link Stability and Transmission Delay Aware(LSTDA)for Flying Adhoc Network(FANET)with a focus on network corridors(NC).FANET consists of Unmanned Aerial Vehicles(UAVs)that face challenges in avoiding transmission loss and delay while ensuring stable communication.The proposed protocol introduces a novel link stability with network corridors priority node selection to check and ensure fair communication in the entire network.The protocol uses a Red-Black(R-B)tree to achieve maximum channel utilization and an advanced relay approach.The paper evaluates LSTDA in terms of End-to-End Delay(E2ED),Packet Delivery Ratio(PDR),Network Lifetime(NLT),and Transmission Loss(TL),and compares it with existing methods such as Link Stability Estimation-based Routing(LEPR),Distributed Priority Tree-based Routing(DPTR),and Delay and Link Stability Aware(DLSA)using MATLAB simulations.The results show that LSTDA outperforms the other protocols,with lower average delay,higher average PDR,longer average NLT,and comparable average TL.展开更多
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr...This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.展开更多
Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and ...Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.展开更多
The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly f...The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.展开更多
In order to improve the broadcast reception rates of beacon messages in vehicle ad-hoc networks,a conclusion that the relationship between collision probability and minimum contention window size and the relationship ...In order to improve the broadcast reception rates of beacon messages in vehicle ad-hoc networks,a conclusion that the relationship between collision probability and minimum contention window size and the relationship between expiration probability and minimum window size was reached by building a Markov model. According to this conclusion, a back-off algorithm based on adjusting the size of minimum contention window called CEB is proposed, and this algorithm is on the basis of the differential size between the number of expiration beacons and preset threshold. Simulations were done to compare the performance of CEB with that of RBEB and BEB, and the results show that the performance of the new proposed algorithm is better than that of RBEB and BEB.展开更多
To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to...To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.展开更多
Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Establis...Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Established routes frequently become stale, and existing communication flows are interrupted, incurring delay and additional overhead. In this paper we propose a novel hybrid routing protocol, which is the combined between of the table-driven routing and on-demand routing in VANET. It makes fast convergence in routing process, minimal drop links, making more reliable links, and adaptive with changing of VANET topology. With neighbor table is updated instantaneously, and using strong neighbor for routing process makes route discovery process start whenever it received requirement, and through using route mechanism appropriately it reduces significantly route overhead at each node. The simulation results illustrate the outstanding properties of our proposed routing protocol.展开更多
Recently the Cognitive Radio (CR), in particular the CR Ad-Hoc Network (CRAHN) technology appears as a burgeoning area in wireless communication that enables utilization of limited network resources in more efficient ...Recently the Cognitive Radio (CR), in particular the CR Ad-Hoc Network (CRAHN) technology appears as a burgeoning area in wireless communication that enables utilization of limited network resources in more efficient and intelligent way;studies indicate that opportunistic utilization of the available radio frequency spectrum, without interfering the licensed primary user (PU) could be made. This paper presents some simulation based performance of the Multi-Channel Hidden Terminal (MCHT) problem on CRAHNs;new observations on the effect of the number of channels on certain PU-activity metrics, e.g., delay and throughput, are described.展开更多
Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementat...Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementation, user experience, and different profile matching algorithms to provide better user experience in ad-hoc social network. We emphasize that strength of an ad-hoc social network depends on a good profile-matching algorithm that provides meaningful friend suggestions in proximity. Keeping browsing history is a good way to determine user’s interest, however, interests change with location. This paper presents a novel profile-matching algorithm for automatically building a user profile based on dynamic GPS (Global Positing System) location and browsing history of users. Building user profile based on GPS location of a user provides benefits to ASN users as this profile represents user’s dynamic interests that keep changing with location e.g. office, home, or some other location. Proposed profile-matching algorithm maintains multiple local profiles based on location of mobile device.展开更多
The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range comm...The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.展开更多
Jamming attack is quite serious threat for Mobile networks that collapses all necessary communication infrastructure. Since mobile nodes in Mobile Ad Hoc Networks (MANET) communicate in a multi-hop mode, there is alwa...Jamming attack is quite serious threat for Mobile networks that collapses all necessary communication infrastructure. Since mobile nodes in Mobile Ad Hoc Networks (MANET) communicate in a multi-hop mode, there is always a possibility for an intruder to launch a jamming attack in order to intercept communication among communication nodes. In this study, a network simulation has been carried out in order to explore and evaluate the possible impacts of jamming attack on MACAW protocol. Ad-hoc network modelling is used to provide communication infrastructure among mobile nodes in order to modelling the simulation scenarios. In simulation model, these nodes have used AODV routing protocol which is designed for MANET while second scenario contains simulated MACAW node models for comparison. On the other hand, this paper is the first study that addresses performance evaluation of MACAW protocol under a constant Jamming Attack. The performance of MACAW protocol is simulated through OPNET Modeler 14.5 software.展开更多
The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the vi...The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the video to be delivered over the chosen links. The routing and rate allocation procedures impact the sustained quality of each video stream measured as the mean squared error (MSE) distortion at the receiver, and the overall network congestion in terms of queuing delay per link. We study the trade-off between these two competing objectives in a convex optimization formulation, and discuss both centralized and dis- tributed solutions for joint routing and rate allocation for multiple streams. For each stream, the optimal allocated rate strikes a balance between the selfish motive of minimizing video distortion and the global good of minimizing network congestions, while the routes are chosen over the least-congested links in the network. In addition to detailed analysis, network simulation results using ns-2 are presented for studying the optimal choice of parameters and to confirm the effectiveness of the proposed measures.展开更多
As an indispensable part of the Intelli-gent Transportation System(ITS),the vehicular ad-hoc network(VANET)has attracted widespread atten-tion from academia and industry.In order to ensure the security of VANET,vehicl...As an indispensable part of the Intelli-gent Transportation System(ITS),the vehicular ad-hoc network(VANET)has attracted widespread atten-tion from academia and industry.In order to ensure the security of VANET,vehicles need to be authen-ticated before accessing the network.Most existing authentication protocols in VANET adopt the Trusted Authority(TA)with centralized structure which is re-sponsible for the authentication tasks of all vehicles.However,the large-scale network consume a lot of computing resources,which leads to unacceptable de-lay in message transmission in VANET.For reducing the computational cost of TA,an efficient three-factor privacy-preserving authentication and key agreement protocol was proposed in our paper.Different from before,the RoadSide Unit(RSU)no longer acts as an intermediate node but is responsible for assisting user authentication,which lead to the computational cost of TA is very low.Through formal and informal analysis,our protocol demonstrates excellent security.Com-pared with previous studies,our work emerges advan-tages and superiorities in the following aspects:com-putational cost,communication cost,security proper-ties and functions,message loss ratio,and message de-lay.These data and evidence indicate that our protocol is an ideal choice for large-scale VANET.展开更多
Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments ...Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.展开更多
We consider the problem of fair rate control for wireless ad-hoc networks with time varying channel capacities. The interaction between links in wireless ad-hoc networks introduces additional constraints on the flow r...We consider the problem of fair rate control for wireless ad-hoc networks with time varying channel capacities. The interaction between links in wireless ad-hoc networks introduces additional constraints on the flow rate. A primal-dual algorithm that guarantees fair rate control is proved to be trajectory stable. Various fairness indexes are obtained by choosing the specified form of the utility functions, and the numerical results validate the effectiveness of the proposed algorithm.展开更多
The Unmanned Aerial Vehicle(UAV)technologies are envisioned to play an important role in the era of Air-Space-Ground integrated networks.In this paper,we investigate the connectivity of a Flying Ad hoc Network(FANET)i...The Unmanned Aerial Vehicle(UAV)technologies are envisioned to play an important role in the era of Air-Space-Ground integrated networks.In this paper,we investigate the connectivity of a Flying Ad hoc Network(FANET)in the presence of a groundbased terminal.In particular,the connected probability of the UAV-to-UAV (U2U) link as well as that of the UAV-to-Ground (U2G) link in a three dimensional (3D) space are analyzed.Furthermore,to mitigate the aggregate interference from UAV individuals,a priority based power control scheme is implemented for enhancing the connectivity of both U2U and U2G links.Numerical results illustrate the effectiveness of the proposed analysis.展开更多
A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a ra...A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.展开更多
As a special type of mobile ad hoc network(MANET),the flying ad hoc network(FANET)has the potential to enable a variety of emerging applications in both civilian wireless communications(e.g.,5G and 6G)and the defense ...As a special type of mobile ad hoc network(MANET),the flying ad hoc network(FANET)has the potential to enable a variety of emerging applications in both civilian wireless communications(e.g.,5G and 6G)and the defense industry.The routing protocol plays a pivotal role in FANET.However,when designing the routing protocol for FANET,it is conventionally assumed that the aerial nodes move randomly.This is clearly inappropriate for a mission-oriented FANET(MO-FANET),in which the aerial nodes typically move toward a given destination from given departure point(s),possibly along a roughly deterministic flight path while maintaining a well-established formation,in order to carry out certain missions.In this paper,a novel cyber–physical routing protocol exploiting the particular mobility pattern of an MO-FANET is proposed based on cross-disciplinary integration,which makes full use of the missiondetermined trajectory dynamics to construct the time sequence of rejoining and separating,as well as the adjacency matrix for each node,as prior information.Compared with the existing representative routing protocols used in FANETs,our protocol achieves a higher packet-delivery ratio(PDR)at the cost of even lower overhead and lower average end-to-end latency,while maintaining a reasonably moderate and stable network jitter,as demonstrated by extensive ns-3-based simulations assuming realistic configurations in an MO-FANET.展开更多
Nowadays,video streaming applications are becoming one of the tendencies driving vehicular network users.In this work,considering the unpredictable vehicle density,the unexpected acceleration or deceleration of the di...Nowadays,video streaming applications are becoming one of the tendencies driving vehicular network users.In this work,considering the unpredictable vehicle density,the unexpected acceleration or deceleration of the different vehicles included in the vehicular traffic load,and the limited radio range of the employed communication scheme,we introduce the“Dynamic Vehicular Clustering”(DVC)algorithm as a new scheme for video streaming systems over vehicular ad-hoc networks(VANET).The proposed algorithm takes advantage of the small cells concept and the introduction of wireless backhauls,inspired by the different features and the performance of the Long Term Evolution(LTE)-Advanced network.Vehicles are clustered together to form dynamically ad-hoc sub-networks included in the vehicular network.The goal of our clustering algorithm is to take into account several characteristics,such as the vehicle’s position and acceleration to reduce latency and packet loss.Therefore,each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.Based on the exceptional features of the LTE-Advanced network(small cells and wireless backhauls)the DVC algorithm is a promising scheme for video streaming services over VANET systems.Experiments were carried out with a virtual topology of the VANET network created with four clusters to implement the DVC algorithm.The results were compared with other algorithms such as Virtual Trust-ability Data transmission(VTD),Named Data Networking(NDN),and Socially Aware Security Message Forwarding(SASMF).Our algorithm can effectively improve the transmission rate of data packets at the expense of a slight increase in end-to-end delay and control overhead.展开更多
Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus o...Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus on enabling congestion control to minimize network transmission delays through flexible power control.To effectively solve the congestion problem,we propose a distributed cross-layer scheduling algorithm,which is empowered by graph-based multi-agent deep reinforcement learning.The transmit power is adaptively adjusted in real-time by our algorithm based only on local information(i.e.,channel state information and queue length)and local communication(i.e.,information exchanged with neighbors).Moreover,the training complexity of the algorithm is low due to the regional cooperation based on the graph attention network.In the evaluation,we show that our algorithm can reduce the transmission delay of data flow under severe signal interference and drastically changing channel states,and demonstrate the adaptability and stability in different topologies.The method is general and can be extended to various types of topologies.展开更多
基金supported in part by the Office of Research and Sponsored Programs,Kean University,the RIF Activity Code 23009 of Zayed University,UAE,and the National Natural Science Foundation of China under Grant 62172366.
文摘The paper presents a new protocol called Link Stability and Transmission Delay Aware(LSTDA)for Flying Adhoc Network(FANET)with a focus on network corridors(NC).FANET consists of Unmanned Aerial Vehicles(UAVs)that face challenges in avoiding transmission loss and delay while ensuring stable communication.The proposed protocol introduces a novel link stability with network corridors priority node selection to check and ensure fair communication in the entire network.The protocol uses a Red-Black(R-B)tree to achieve maximum channel utilization and an advanced relay approach.The paper evaluates LSTDA in terms of End-to-End Delay(E2ED),Packet Delivery Ratio(PDR),Network Lifetime(NLT),and Transmission Loss(TL),and compares it with existing methods such as Link Stability Estimation-based Routing(LEPR),Distributed Priority Tree-based Routing(DPTR),and Delay and Link Stability Aware(DLSA)using MATLAB simulations.The results show that LSTDA outperforms the other protocols,with lower average delay,higher average PDR,longer average NLT,and comparable average TL.
基金This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128.
文摘This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation of China for Distinguished Young ScholarsProjects(61073037,60773013) supported by the National Natural Science Foundation of China
文摘Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.
基金This work is supported in part by the National Natural Science Foundation of China under Grant No.61931011in part by the National Key Research and Development Project of China under Grant No.2018YFB1800801+2 种基金in part by the Primary Research&Development plan of Jiangsu Province under Grant BE2021013-4in part by the National Natural Science Foundation of China under Grants No.61827801 and 61631020the China Scholarship Council(CSC)Grant 202006830072.
文摘The routing protocols are paramount to guarantee the Quality of Service(QoS)for Flying Ad Hoc Networks(FANETs).However,they still face several challenges owing to high mobility and dynamic topology.This paper mainly focuses on the adaptive routing protocol and proposes a Three Dimensional Q-Learning(3DQ)based routing protocol to guarantee the packet delivery ratio and improve the QoS.In 3DQ routing,we propose a Q-Learning based routing decision scheme,which contains a link-state prediction module and routing decision module.The link-state prediction module allows each Unmanned Aerial Vehicle(UAV)to predict the link-state of Neighboring UAVs(NUs),considering their Three Dimensional mobility and packet arrival.Then,UAV can produce routing decisions with the help of the routing decision module considering the link-state.We evaluate the various performance of 3DQ routing,and simulation results demonstrate that 3DQ can improve packet delivery ratio,goodput and delay of baseline protocol at most 71.36%,89.32%and 83.54%in FANETs over a variety of communication scenarios.
基金supported by National Basic Research Program of China (2013CB329005)National Natural Science Foundation of China (61302100, 61201162, 61471203)+1 种基金Basic Research Program of Jiangsu Province (BK2011027)Specialized Research Fund for the Doctoral Program of Higher Education (20133223120002)
文摘In order to improve the broadcast reception rates of beacon messages in vehicle ad-hoc networks,a conclusion that the relationship between collision probability and minimum contention window size and the relationship between expiration probability and minimum window size was reached by building a Markov model. According to this conclusion, a back-off algorithm based on adjusting the size of minimum contention window called CEB is proposed, and this algorithm is on the basis of the differential size between the number of expiration beacons and preset threshold. Simulations were done to compare the performance of CEB with that of RBEB and BEB, and the results show that the performance of the new proposed algorithm is better than that of RBEB and BEB.
基金funded by the Six Talent Peaks Project in Jiangsu Province(No.KTHY-052)the National Natural Science Foundation of China(No.61971245)+1 种基金the Science and Technology program of Nantong(Contract No.JC2018048)the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province&Key Lab of Modern Optical Technologies of Education Ministry of China,Soochow University(No.KJS1858).
文摘To achieve the better system performance for cooperative communication in non-orthogonal cognitive radio vehicular adhoc networks(CR-VANETs),this paper investigates the power allocation considering the interference to the main system in a controllable range.We propose a three-slot one-way vehicle system model where the mobile vehicle nodes complete information interaction with the assistance of other independent nodes by borrowing the unused radio spectrum with the primary networks.The end-to-end SNR relationship in overlay and underlay cognitive communication system mode are analyzed by using two forwarding protocol,namely,decode-and-forward(DF)protocol and amplify-and-forward(AF)protocol,respectively.The system outage probability is derived and the optimal power allocation factor is obtained via seeking the minimum value of the approximation of system outage probability.The analytical results have been confirmed by means of Monte Carlo simulations.Simulation results show that the proposed system performance in terms of outage under the optimal power allocation is superior to that under the average power allocation,and is also better than that under other power allocation systems.
基金Sponsored by the National Science and Technology Major Project(Grant No. 2010ZX03005-003)
文摘Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Established routes frequently become stale, and existing communication flows are interrupted, incurring delay and additional overhead. In this paper we propose a novel hybrid routing protocol, which is the combined between of the table-driven routing and on-demand routing in VANET. It makes fast convergence in routing process, minimal drop links, making more reliable links, and adaptive with changing of VANET topology. With neighbor table is updated instantaneously, and using strong neighbor for routing process makes route discovery process start whenever it received requirement, and through using route mechanism appropriately it reduces significantly route overhead at each node. The simulation results illustrate the outstanding properties of our proposed routing protocol.
文摘Recently the Cognitive Radio (CR), in particular the CR Ad-Hoc Network (CRAHN) technology appears as a burgeoning area in wireless communication that enables utilization of limited network resources in more efficient and intelligent way;studies indicate that opportunistic utilization of the available radio frequency spectrum, without interfering the licensed primary user (PU) could be made. This paper presents some simulation based performance of the Multi-Channel Hidden Terminal (MCHT) problem on CRAHNs;new observations on the effect of the number of channels on certain PU-activity metrics, e.g., delay and throughput, are described.
文摘Among mobile users, ad-hoc social network (ASN) is becoming a popular platform to connect and share their interests anytime anywhere. Many researchers and computer scientists investigated ASN architecture, implementation, user experience, and different profile matching algorithms to provide better user experience in ad-hoc social network. We emphasize that strength of an ad-hoc social network depends on a good profile-matching algorithm that provides meaningful friend suggestions in proximity. Keeping browsing history is a good way to determine user’s interest, however, interests change with location. This paper presents a novel profile-matching algorithm for automatically building a user profile based on dynamic GPS (Global Positing System) location and browsing history of users. Building user profile based on GPS location of a user provides benefits to ASN users as this profile represents user’s dynamic interests that keep changing with location e.g. office, home, or some other location. Proposed profile-matching algorithm maintains multiple local profiles based on location of mobile device.
文摘The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.
文摘Jamming attack is quite serious threat for Mobile networks that collapses all necessary communication infrastructure. Since mobile nodes in Mobile Ad Hoc Networks (MANET) communicate in a multi-hop mode, there is always a possibility for an intruder to launch a jamming attack in order to intercept communication among communication nodes. In this study, a network simulation has been carried out in order to explore and evaluate the possible impacts of jamming attack on MACAW protocol. Ad-hoc network modelling is used to provide communication infrastructure among mobile nodes in order to modelling the simulation scenarios. In simulation model, these nodes have used AODV routing protocol which is designed for MANET while second scenario contains simulated MACAW node models for comparison. On the other hand, this paper is the first study that addresses performance evaluation of MACAW protocol under a constant Jamming Attack. The performance of MACAW protocol is simulated through OPNET Modeler 14.5 software.
基金Project (No. CCR-0325639) partially supported by the National Science Foundation, USA
文摘The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the video to be delivered over the chosen links. The routing and rate allocation procedures impact the sustained quality of each video stream measured as the mean squared error (MSE) distortion at the receiver, and the overall network congestion in terms of queuing delay per link. We study the trade-off between these two competing objectives in a convex optimization formulation, and discuss both centralized and dis- tributed solutions for joint routing and rate allocation for multiple streams. For each stream, the optimal allocated rate strikes a balance between the selfish motive of minimizing video distortion and the global good of minimizing network congestions, while the routes are chosen over the least-congested links in the network. In addition to detailed analysis, network simulation results using ns-2 are presented for studying the optimal choice of parameters and to confirm the effectiveness of the proposed measures.
基金the National Natural Sci-ence Foundation of China under Grant No.61772185.
文摘As an indispensable part of the Intelli-gent Transportation System(ITS),the vehicular ad-hoc network(VANET)has attracted widespread atten-tion from academia and industry.In order to ensure the security of VANET,vehicles need to be authen-ticated before accessing the network.Most existing authentication protocols in VANET adopt the Trusted Authority(TA)with centralized structure which is re-sponsible for the authentication tasks of all vehicles.However,the large-scale network consume a lot of computing resources,which leads to unacceptable de-lay in message transmission in VANET.For reducing the computational cost of TA,an efficient three-factor privacy-preserving authentication and key agreement protocol was proposed in our paper.Different from before,the RoadSide Unit(RSU)no longer acts as an intermediate node but is responsible for assisting user authentication,which lead to the computational cost of TA is very low.Through formal and informal analysis,our protocol demonstrates excellent security.Com-pared with previous studies,our work emerges advan-tages and superiorities in the following aspects:com-putational cost,communication cost,security proper-ties and functions,message loss ratio,and message de-lay.These data and evidence indicate that our protocol is an ideal choice for large-scale VANET.
文摘Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No.60525303)the National Natural Science Foundation of China(No.60904048,60404022,60604012)the Natural Science Foundation of Hebei Province(No.F2005000390,F2006000270)
文摘We consider the problem of fair rate control for wireless ad-hoc networks with time varying channel capacities. The interaction between links in wireless ad-hoc networks introduces additional constraints on the flow rate. A primal-dual algorithm that guarantees fair rate control is proved to be trajectory stable. Various fairness indexes are obtained by choosing the specified form of the utility functions, and the numerical results validate the effectiveness of the proposed algorithm.
基金National Natural Science Foundation of China(No.62071035)。
文摘The Unmanned Aerial Vehicle(UAV)technologies are envisioned to play an important role in the era of Air-Space-Ground integrated networks.In this paper,we investigate the connectivity of a Flying Ad hoc Network(FANET)in the presence of a groundbased terminal.In particular,the connected probability of the UAV-to-UAV (U2U) link as well as that of the UAV-to-Ground (U2G) link in a three dimensional (3D) space are analyzed.Furthermore,to mitigate the aggregate interference from UAV individuals,a priority based power control scheme is implemented for enhancing the connectivity of both U2U and U2G links.Numerical results illustrate the effectiveness of the proposed analysis.
文摘A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.
基金This work is financially supported by the Beijing Municipal Natural Science Foundation(L202012)the Open Research Project of the State Key Laboratory of Media Convergence and Communication,Communication University of China(SKLMCC2020KF008)the Fundamental Research Funds for the Central Universities(2020RC05).The authors would like to thank Professor Ping Zhang(Member of the Chinese Academy of Engineering,Beijing University of Posts and Telecommunications)and Professor Quan Yu(Member of the Chinese Academy of Engineering,Peng Cheng Laboratory)for their insightful comments and suggestions.
文摘As a special type of mobile ad hoc network(MANET),the flying ad hoc network(FANET)has the potential to enable a variety of emerging applications in both civilian wireless communications(e.g.,5G and 6G)and the defense industry.The routing protocol plays a pivotal role in FANET.However,when designing the routing protocol for FANET,it is conventionally assumed that the aerial nodes move randomly.This is clearly inappropriate for a mission-oriented FANET(MO-FANET),in which the aerial nodes typically move toward a given destination from given departure point(s),possibly along a roughly deterministic flight path while maintaining a well-established formation,in order to carry out certain missions.In this paper,a novel cyber–physical routing protocol exploiting the particular mobility pattern of an MO-FANET is proposed based on cross-disciplinary integration,which makes full use of the missiondetermined trajectory dynamics to construct the time sequence of rejoining and separating,as well as the adjacency matrix for each node,as prior information.Compared with the existing representative routing protocols used in FANETs,our protocol achieves a higher packet-delivery ratio(PDR)at the cost of even lower overhead and lower average end-to-end latency,while maintaining a reasonably moderate and stable network jitter,as demonstrated by extensive ns-3-based simulations assuming realistic configurations in an MO-FANET.
文摘Nowadays,video streaming applications are becoming one of the tendencies driving vehicular network users.In this work,considering the unpredictable vehicle density,the unexpected acceleration or deceleration of the different vehicles included in the vehicular traffic load,and the limited radio range of the employed communication scheme,we introduce the“Dynamic Vehicular Clustering”(DVC)algorithm as a new scheme for video streaming systems over vehicular ad-hoc networks(VANET).The proposed algorithm takes advantage of the small cells concept and the introduction of wireless backhauls,inspired by the different features and the performance of the Long Term Evolution(LTE)-Advanced network.Vehicles are clustered together to form dynamically ad-hoc sub-networks included in the vehicular network.The goal of our clustering algorithm is to take into account several characteristics,such as the vehicle’s position and acceleration to reduce latency and packet loss.Therefore,each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.Based on the exceptional features of the LTE-Advanced network(small cells and wireless backhauls)the DVC algorithm is a promising scheme for video streaming services over VANET systems.Experiments were carried out with a virtual topology of the VANET network created with four clusters to implement the DVC algorithm.The results were compared with other algorithms such as Virtual Trust-ability Data transmission(VTD),Named Data Networking(NDN),and Socially Aware Security Message Forwarding(SASMF).Our algorithm can effectively improve the transmission rate of data packets at the expense of a slight increase in end-to-end delay and control overhead.
基金supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.RS-2022-00155885, Artificial Intelligence Convergence Innovation Human Resources Development (Hanyang University ERICA))supported by the National Natural Science Foundation of China under Grant No. 61971264the National Natural Science Foundation of China/Research Grants Council Collaborative Research Scheme under Grant No. 62261160390
文摘Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus on enabling congestion control to minimize network transmission delays through flexible power control.To effectively solve the congestion problem,we propose a distributed cross-layer scheduling algorithm,which is empowered by graph-based multi-agent deep reinforcement learning.The transmit power is adaptively adjusted in real-time by our algorithm based only on local information(i.e.,channel state information and queue length)and local communication(i.e.,information exchanged with neighbors).Moreover,the training complexity of the algorithm is low due to the regional cooperation based on the graph attention network.In the evaluation,we show that our algorithm can reduce the transmission delay of data flow under severe signal interference and drastically changing channel states,and demonstrate the adaptability and stability in different topologies.The method is general and can be extended to various types of topologies.