期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于FoBa算法思想的支持向量机稀疏SMO算法研究
1
作者
梁万路
《舰船电子工程》
2011年第1期48-50,70,共4页
目前的支持向量机解析方法,如SMO算法在一定程度上解决传统支持向量机实现方法需要高额存储空间的问题,而对支持向量数目的约减并未过多关注,算法的稀疏性有待进一步提高。该文将FoBa算法对特征进行约减的思想引入SMO算法中,对训练产生...
目前的支持向量机解析方法,如SMO算法在一定程度上解决传统支持向量机实现方法需要高额存储空间的问题,而对支持向量数目的约减并未过多关注,算法的稀疏性有待进一步提高。该文将FoBa算法对特征进行约减的思想引入SMO算法中,对训练产生的作用甚微的支持向量进行约减,提出了稀疏SMO算法。实验结果表明算法在提高预测速度上具有一定的竞争力。
展开更多
关键词
支持向量机
SMO
算法
稀疏
支持向量约减
foba算法
下载PDF
职称材料
题名
一种基于FoBa算法思想的支持向量机稀疏SMO算法研究
1
作者
梁万路
机构
解放军炮兵学院
出处
《舰船电子工程》
2011年第1期48-50,70,共4页
基金
国家自然科学基金<基于损失函数的统计学习算法及其应用研究>(编号:60975040)资助
文摘
目前的支持向量机解析方法,如SMO算法在一定程度上解决传统支持向量机实现方法需要高额存储空间的问题,而对支持向量数目的约减并未过多关注,算法的稀疏性有待进一步提高。该文将FoBa算法对特征进行约减的思想引入SMO算法中,对训练产生的作用甚微的支持向量进行约减,提出了稀疏SMO算法。实验结果表明算法在提高预测速度上具有一定的竞争力。
关键词
支持向量机
SMO
算法
稀疏
支持向量约减
foba算法
Keywords
SVM,SMO algorithm,sparsity,reducing support vectors,
foba
algorithm
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于FoBa算法思想的支持向量机稀疏SMO算法研究
梁万路
《舰船电子工程》
2011
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部