The interaction between a cationic dye Methylene Blue (MB) and an anionic surfactant sodium dodecyl sulfate (SDS) with the presence of Cd2+ was investigated spectrophotometrically in a certain concentration range...The interaction between a cationic dye Methylene Blue (MB) and an anionic surfactant sodium dodecyl sulfate (SDS) with the presence of Cd2+ was investigated spectrophotometrically in a certain concentration range. The spectrophotometric measurements of dye-metal ion-surfactant system were carried out. The results indicated that the SDS concentration had a significant influence on the dye spectrum, while the addition of Cd2~ hardly caused change of the maximum value of absorbance. According to this observation, we concluded that electrostatic and hydrophobic interaction between dye and surfactant occurred up to a certain level, and the homo-ions Cd2+ almost exerted no effect on the dye-surfactant complexation, establishing a theoretical foundation for simultaneous removal of organic dye and heavy metal using foam fractionation. Meanwhile, the effects of their interaction on foam performance were investigated. The results showed that the addition of Cd2+ favored the tendency to ameliorate foam properties just contrary to MB. The feasibility of foam separation for dye and heavy metal removal from simulated wastewater was also confirmed using a continuous foam fractionator. In the simultaneous removal process, with the initial SDS concentration ranging from 0.5 to 5.0 retool/L, the maximum removal efticiencies of MB and Cd2+ were obtained as 99.69% and 99.61%, respectively. The enrichment ratios were reduced from 24.34 to 7.65 for MB and from 22.01 to 3.35 for Cd2+.展开更多
In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann–Liouville derivative, the Lie point symmetries and symmetr...In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann–Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method.展开更多
基金supported by the National Natural Science Foundation of China (No. 50608028,50808073,50978088,51008121,51039001)the New Century Excellent Talents in University from the Ministry of Education of China (No. NCET-08-0180,NCET-08-0181)
文摘The interaction between a cationic dye Methylene Blue (MB) and an anionic surfactant sodium dodecyl sulfate (SDS) with the presence of Cd2+ was investigated spectrophotometrically in a certain concentration range. The spectrophotometric measurements of dye-metal ion-surfactant system were carried out. The results indicated that the SDS concentration had a significant influence on the dye spectrum, while the addition of Cd2~ hardly caused change of the maximum value of absorbance. According to this observation, we concluded that electrostatic and hydrophobic interaction between dye and surfactant occurred up to a certain level, and the homo-ions Cd2+ almost exerted no effect on the dye-surfactant complexation, establishing a theoretical foundation for simultaneous removal of organic dye and heavy metal using foam fractionation. Meanwhile, the effects of their interaction on foam performance were investigated. The results showed that the addition of Cd2+ favored the tendency to ameliorate foam properties just contrary to MB. The feasibility of foam separation for dye and heavy metal removal from simulated wastewater was also confirmed using a continuous foam fractionator. In the simultaneous removal process, with the initial SDS concentration ranging from 0.5 to 5.0 retool/L, the maximum removal efticiencies of MB and Cd2+ were obtained as 99.69% and 99.61%, respectively. The enrichment ratios were reduced from 24.34 to 7.65 for MB and from 22.01 to 3.35 for Cd2+.
基金Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No.201410290039the Fundamental Research Funds for the Central Universities under Grant Nos.2015QNA53 and 2015XKQY14+2 种基金the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Minesthe General Financial Grant from the China Postdoctoral Science Foundation under Grant No.2015M570498Natural Sciences Foundation of China under Grant No.11301527
文摘In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann–Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method.