The modified empirical two-temperature model of surface burning on a foam metal matrix was proposed. The comparative experimental studies of radiation properties of both matrices without and with ceramic coating (alum...The modified empirical two-temperature model of surface burning on a foam metal matrix was proposed. The comparative experimental studies of radiation properties of both matrices without and with ceramic coating (alumina) were carried out. Measurement was conducted in different spectral ranges. The experimental results were compared with theoretical calculations. It was shown that the integral radiation efficiency of the matrix with ceramic coating was comparable with radiation efficiency of the matrix without any coating in the wide range of the firing rate and surpassed it on 30% - 40% at firing rate above 50 W/cm2.展开更多
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw...This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.展开更多
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu...In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.展开更多
The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam ...The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam core subjected to a concentrated loading. The interaction of plastic bending and stretching in the local deformation regions of the face sheet was considered in the analytical model. Moreover, the effects of the shear strength of the foam core on the indentation behavior were discussed in detail. The finite element simulations were preformed to validate the theoretical model. Comparisons between the analytical predictions and finite element results were conducted and good agreement was achieved. The results show that the membrane force dominates indentation behavior of the sandwich beams when the maximum deflection exceeds the thickness of the face sheet.展开更多
Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity o...Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity of sandwiched beams.In this paper,the indentation behavior of foam core sandwich beams without considering the globally axial and flexural deformation was analyzed using the principle of virtual velocities.A concisely theoretical solution of loading capacity and denting profile was presented.The denting load was found to be proportional to the square root of the denting depth.A finite element model was established to verify the prediction of the model.The load-indentation curves and the profiles of the dented zone predicted by theoretical model and numerical simulation are in good agreement.展开更多
A comprehensive study on the mechanical behavior of foamed metals was demonstrated.The relationship among their mechanical properties,preparation method,porosity and the structure was briefly studied as well.
Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve ...Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve the stability of Li metal but the properties of these foams are inherently limited. Here we report a facile surface modification approach via magnetron sputtering of mixed oxides that effectively modulate the properties of Cu foams for supporting Li metal with remarkable stability. We discovered that hybrid Li anodes with Li metal thermally infused to aluminum-zinc oxides(AZO) coated Cu foams have significantly improved stability and reactivity compared with pristine Li foils and Li infused to unmodified Cu foams. Full cells assembled with a Li Fe PO4 cathode and a hybrid anode maintained low and stable charge-transfer resistance(<50) during 500 cycles in carbonate electrolytes, and exhibited superior rate capability(~100 m Ah g-1 at 20 C) along with better electrochemical reversibility and surface stability. The AZO modified Cu foams had superior mechanical strength and afforded the hybrid anodes with minimized volume change without the formation of dendrites during battery cycling. The rational construction of surface architecture to precisely control Li plating and stripping may have great implications for the practical applications of Li metal batteries.展开更多
The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive ...The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.展开更多
A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2.The influences of power, frequency, and oth...A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2.The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition.It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2.The maximum CO2 decomposition rates of 48.6%and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively.展开更多
Exact solution of the stress and velocity fields of a cylinder tube of metallic foams under inner pressure is given in which the Triantafillou and Gibson constitutive law (TG model) for the material is taken as a ba...Exact solution of the stress and velocity fields of a cylinder tube of metallic foams under inner pressure is given in which the Triantafillou and Gibson constitutive law (TG model) for the material is taken as a basis of the calculation. The nonlinear equation is turned linear equation by introducing a kinematics parameter. The differences between the full condensed materials and the effect of the relative density are also discussed.展开更多
Fabrication characteristics are unstable in direct foaming method. Therefore, most of near net-shape metallic foams are produced, and investigated by powder metallurgy. Direct foaming method, however, has many benefi...Fabrication characteristics are unstable in direct foaming method. Therefore, most of near net-shape metallic foams are produced, and investigated by powder metallurgy. Direct foaming method, however, has many benefits (i.e. reduce the unit cost of goods and fabrication process etc.) to fabrication of metallic foams. In this article, the fabrication characteristic of near net-shape metallic foams by direct foaming method was evaluated. Al and Plaster was used for base material and mould material respectively. Ca and TiH2 were added to molten Al as thickening and blowing agent for stable condition of bubbles. Thickening time was about 10 min with a stirring speed of 600 r/min. Foaming time was 30-120 s for evaluation of the optimum foaming condition. Amount of agent was selected by pre-experimental data. Porosity of near net-shape goods was measured by Archimedes method. On the other hand, it seems that increasing poring time and thickening agent make the poor porosity展开更多
This study evaluates the performance of a model of open-cell metal foams generated by sphere functions.To this end,an electromagnetic shield constructed from the model was inserted between two horn antennas in an elec...This study evaluates the performance of a model of open-cell metal foams generated by sphere functions.To this end,an electromagnetic shield constructed from the model was inserted between two horn antennas in an electromagnetic wave propagation simulation.The foam-hole diameter in the electromagnetic shield model was varied as d=2.5 and 5.0 mm,and the frequency of the electromagnetic waves was varied from 3 to 13 GHz.In the numerical experiments of shield effectiveness,the shields with foam holes of both diameters attenuated the electromagnetic waves across the studied frequency range.The shield effectiveness was enhanced at low frequencies and in the shield with smaller hole diameter.展开更多
In the present study,the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium(LTNE)model and local thermal equilibrium(LTE)model.Temperature field dist...In the present study,the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium(LTNE)model and local thermal equilibrium(LTE)model.Temperature field distributions and temperature difference field distributions of solid and fluid phases were presented.Detailed thermal performance comparisons based on the LTE and LTNE models were evaluated by considering the effects of the relevant metal foam morphological and channel geometrical parameters.Results indicate that a distinct temperature difference exists between the solid and fluid phases when the LTNE effect is pronounced.The average Nusselt numbers predicted by both the LTE and LTNE models are approaching with the increase of porosity,pore density,Reynolds number,large thermal conductivity ratio,and large aspect ratio.This is attributed to the significant reduction of the interstitial convective thermal resistance between the solid and fluid phases,as a result,the LTE model can replace the LTNE model for thermal modeling in these conditions.In addition,the overall thermal performance assessment of metal foam heat sink is compared with the non-porous heat sink,and it shows that the thermal performance factor of metal foam heat sink is approximately two times of the non-porous heat sink.展开更多
Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open ...Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open cell structures, called sponges, were treated. A new technique to manufacture sponges by plaster investment casting was described. Experimental results show that it is essential to make a sound plaster mould by casting plaster slurry into the polyurethane foams and infiltrate the open channels of the baked plaster mold by molten metal. The optimal processes include plaster slurry preparation, plaster mold baking, and molten metal infiltration. The sponge sample with porosity of 97% is presented.展开更多
Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximati...Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.展开更多
To determine the solutions of the well-known problem of a finite width strip with single edge crack,some results on elasto-plastic fracture analysis for metallic foams are reported.Meanwhile,in order to discuss and pu...To determine the solutions of the well-known problem of a finite width strip with single edge crack,some results on elasto-plastic fracture analysis for metallic foams are reported.Meanwhile,in order to discuss and put an insight into the nonlinear fracture analysis,the Dugdale model for plastic deformation of this configuration for metallic foams is recommended and solved.Combining the asymptotic solution with the Dugdale model and elastic solution,the stress field in the plastic zone and the size of the plastic zone are expressed as analytical forms.Based on Williams expansion method,the estimate of the scale factor is also completed and analyzed.In view of these analytical solutions,the results show the scale factor is a useful parameter for the fracture theory of metallic foams.展开更多
This paper proposes a modified Kelvin model for high mechanical property open-cell metal foams and investigates its application in thermal simulations. The thermal conductivity is simulated based on the steady state m...This paper proposes a modified Kelvin model for high mechanical property open-cell metal foams and investigates its application in thermal simulations. The thermal conductivity is simulated based on the steady state method and the results are consistent with experimental values. The melting process of phase change materials (PCMs) in Kelvin model and its modified model is numerically investigated under a temperature constant heat resource. By detecting the temperature variations, it shows that the metal foam greatly improves the heat transfer in energy storage systems. Besides, the comparison of the melting process in two foam models indicates that the systems based on high mechanical property metal foams have a shorter melting time. The melting process of paraffin in modified Kelvin metal foam models with three different porosities (65%, 70% and 75%) are numerically analyzed and compared.展开更多
文摘The modified empirical two-temperature model of surface burning on a foam metal matrix was proposed. The comparative experimental studies of radiation properties of both matrices without and with ceramic coating (alumina) were carried out. Measurement was conducted in different spectral ranges. The experimental results were compared with theoretical calculations. It was shown that the integral radiation efficiency of the matrix with ceramic coating was comparable with radiation efficiency of the matrix without any coating in the wide range of the firing rate and surpassed it on 30% - 40% at firing rate above 50 W/cm2.
文摘This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.
文摘In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.
基金Projects(11102146,11372235,11272246,11021202,11002107)supported by the National Natural Science Foundation of ChinaProject(2011CB610301)supported by the National Basic Research Program of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam core subjected to a concentrated loading. The interaction of plastic bending and stretching in the local deformation regions of the face sheet was considered in the analytical model. Moreover, the effects of the shear strength of the foam core on the indentation behavior were discussed in detail. The finite element simulations were preformed to validate the theoretical model. Comparisons between the analytical predictions and finite element results were conducted and good agreement was achieved. The results show that the membrane force dominates indentation behavior of the sandwich beams when the maximum deflection exceeds the thickness of the face sheet.
基金supported by the National Natural Science Foundation of China(90916026,10532020 and 10672156)the Chinese Academy of Sciences(KJCX2-EW-L03)
文摘Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity of sandwiched beams.In this paper,the indentation behavior of foam core sandwich beams without considering the globally axial and flexural deformation was analyzed using the principle of virtual velocities.A concisely theoretical solution of loading capacity and denting profile was presented.The denting load was found to be proportional to the square root of the denting depth.A finite element model was established to verify the prediction of the model.The load-indentation curves and the profiles of the dented zone predicted by theoretical model and numerical simulation are in good agreement.
基金Item Sponsored by National Natural Science Foundation of China(50201003)
文摘A comprehensive study on the mechanical behavior of foamed metals was demonstrated.The relationship among their mechanical properties,preparation method,porosity and the structure was briefly studied as well.
基金The financial supports of the National Natural Science Foundation of China(Grant Nos.51572060,51702067 and 51671074)Special Financial Grant from the China Postdoctoral Science Foundation(No.2017T100239)+1 种基金General Financial Grant from the China Postdoctoral Science Foundation(No.2016M590279)the startup grants from Northern Illinois University。
文摘Metallic Li is a promising anode material for high energy density batteries but it suffers from poor stability and formation of unsafe dendrites. Previous studies demonstrated that 3 D metal foams are able to improve the stability of Li metal but the properties of these foams are inherently limited. Here we report a facile surface modification approach via magnetron sputtering of mixed oxides that effectively modulate the properties of Cu foams for supporting Li metal with remarkable stability. We discovered that hybrid Li anodes with Li metal thermally infused to aluminum-zinc oxides(AZO) coated Cu foams have significantly improved stability and reactivity compared with pristine Li foils and Li infused to unmodified Cu foams. Full cells assembled with a Li Fe PO4 cathode and a hybrid anode maintained low and stable charge-transfer resistance(<50) during 500 cycles in carbonate electrolytes, and exhibited superior rate capability(~100 m Ah g-1 at 20 C) along with better electrochemical reversibility and surface stability. The AZO modified Cu foams had superior mechanical strength and afforded the hybrid anodes with minimized volume change without the formation of dendrites during battery cycling. The rational construction of surface architecture to precisely control Li plating and stripping may have great implications for the practical applications of Li metal batteries.
文摘The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.
基金financially supported by the National Natural Science Foundation of China (No.21663022)
文摘A self-cooling dielectric barrier discharge reactor, packed with foamed Cu and Ni mesh and operated at ambient conditions, was used for the composition of CO2 into CO and O2.The influences of power, frequency, and other discharge characteristics were investigated in order to have a better understanding of the effect of the packing materials on CO2 decomposition.It is found that porous foamed Cu and Ni not only played a role as the carrier of energy transformation and electrode distributed in discharge gaps but also promoted the equilibrium shifting toward the product side to yield more CO by consuming some part of O2 and O radicals generated from the decomposition of CO2.The maximum CO2 decomposition rates of 48.6%and 49.2% and the maximum energy efficiency of 9.71% and 10.18% were obtained in the foamed Ni and Cu mesh, respectively.
基金the National Natural Science Foundation of China(10672022)
文摘Exact solution of the stress and velocity fields of a cylinder tube of metallic foams under inner pressure is given in which the Triantafillou and Gibson constitutive law (TG model) for the material is taken as a basis of the calculation. The nonlinear equation is turned linear equation by introducing a kinematics parameter. The differences between the full condensed materials and the effect of the relative density are also discussed.
文摘Fabrication characteristics are unstable in direct foaming method. Therefore, most of near net-shape metallic foams are produced, and investigated by powder metallurgy. Direct foaming method, however, has many benefits (i.e. reduce the unit cost of goods and fabrication process etc.) to fabrication of metallic foams. In this article, the fabrication characteristic of near net-shape metallic foams by direct foaming method was evaluated. Al and Plaster was used for base material and mould material respectively. Ca and TiH2 were added to molten Al as thickening and blowing agent for stable condition of bubbles. Thickening time was about 10 min with a stirring speed of 600 r/min. Foaming time was 30-120 s for evaluation of the optimum foaming condition. Amount of agent was selected by pre-experimental data. Porosity of near net-shape goods was measured by Archimedes method. On the other hand, it seems that increasing poring time and thickening agent make the poor porosity
文摘This study evaluates the performance of a model of open-cell metal foams generated by sphere functions.To this end,an electromagnetic shield constructed from the model was inserted between two horn antennas in an electromagnetic wave propagation simulation.The foam-hole diameter in the electromagnetic shield model was varied as d=2.5 and 5.0 mm,and the frequency of the electromagnetic waves was varied from 3 to 13 GHz.In the numerical experiments of shield effectiveness,the shields with foam holes of both diameters attenuated the electromagnetic waves across the studied frequency range.The shield effectiveness was enhanced at low frequencies and in the shield with smaller hole diameter.
基金supported by the National Natural Science Foundation of China(No.51676208 and No.51906257)the fundamental research funds of central universities(No.18CX07012A and No.19CX05002A)the Major Program of the Natural Science Foundation of Shandong Province(No.ZR2019ZD11).
文摘In the present study,the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium(LTNE)model and local thermal equilibrium(LTE)model.Temperature field distributions and temperature difference field distributions of solid and fluid phases were presented.Detailed thermal performance comparisons based on the LTE and LTNE models were evaluated by considering the effects of the relevant metal foam morphological and channel geometrical parameters.Results indicate that a distinct temperature difference exists between the solid and fluid phases when the LTNE effect is pronounced.The average Nusselt numbers predicted by both the LTE and LTNE models are approaching with the increase of porosity,pore density,Reynolds number,large thermal conductivity ratio,and large aspect ratio.This is attributed to the significant reduction of the interstitial convective thermal resistance between the solid and fluid phases,as a result,the LTE model can replace the LTNE model for thermal modeling in these conditions.In addition,the overall thermal performance assessment of metal foam heat sink is compared with the non-porous heat sink,and it shows that the thermal performance factor of metal foam heat sink is approximately two times of the non-porous heat sink.
文摘Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open cell structures, called sponges, were treated. A new technique to manufacture sponges by plaster investment casting was described. Experimental results show that it is essential to make a sound plaster mould by casting plaster slurry into the polyurethane foams and infiltrate the open channels of the baked plaster mold by molten metal. The optimal processes include plaster slurry preparation, plaster mold baking, and molten metal infiltration. The sponge sample with porosity of 97% is presented.
基金the National Natural Science Foundation of China(Nos.11872291 and11972281)the Jiangsu Key Laboratory of Engineering Mechanics,Southeast University+2 种基金the Fundamental Research Funds for the Central Universities(No.LEM21B01)the Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(No.cj202002)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-034)。
文摘Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.
基金Supported by the National Natural Science Foundation of China(10972035)
文摘To determine the solutions of the well-known problem of a finite width strip with single edge crack,some results on elasto-plastic fracture analysis for metallic foams are reported.Meanwhile,in order to discuss and put an insight into the nonlinear fracture analysis,the Dugdale model for plastic deformation of this configuration for metallic foams is recommended and solved.Combining the asymptotic solution with the Dugdale model and elastic solution,the stress field in the plastic zone and the size of the plastic zone are expressed as analytical forms.Based on Williams expansion method,the estimate of the scale factor is also completed and analyzed.In view of these analytical solutions,the results show the scale factor is a useful parameter for the fracture theory of metallic foams.
文摘This paper proposes a modified Kelvin model for high mechanical property open-cell metal foams and investigates its application in thermal simulations. The thermal conductivity is simulated based on the steady state method and the results are consistent with experimental values. The melting process of phase change materials (PCMs) in Kelvin model and its modified model is numerically investigated under a temperature constant heat resource. By detecting the temperature variations, it shows that the metal foam greatly improves the heat transfer in energy storage systems. Besides, the comparison of the melting process in two foam models indicates that the systems based on high mechanical property metal foams have a shorter melting time. The melting process of paraffin in modified Kelvin metal foam models with three different porosities (65%, 70% and 75%) are numerically analyzed and compared.