Foamed asphalt typically relies on water as a foaming agent because water becomes gaseous at elevated temperatures, generating numerous tiny bubbles in the asphalt and causing spontaneous foaming. In this study, ethan...Foamed asphalt typically relies on water as a foaming agent because water becomes gaseous at elevated temperatures, generating numerous tiny bubbles in the asphalt and causing spontaneous foaming. In this study, ethanol was used as a potential alternative to water as a foaming agent. Ethanol is expected to be a physical blowing agent in the same manner as water, except it requires less energy to foam due to its 78 ℃ boiling point. This study compares the performance of water and ethanol as foaming agents through the measurements of rotational viscosity, the reduction in temperature during foaming, and volatile loss. The ethanol-foamed asphalt binders were prepared at 80 ~C and 100 ~C, while the water-foamed asphalt binders were prepared at 100 ~C and 120 ~'C. Additionally, the rolling thin film oven (RTFO) was used to generate short-term aging of the foamed asphalt binders. A rotational viscometer was used to determine the viscosity of the asphalt binders at 80 ~C, 100 ~C, 120 ~C, 140 ~C, and 160 ~C. Overall, ethanol can function in the same manner as water but requires less energy to foam. It is proven based on the smaller drop in temperature of the asphalt binder foamed using ethanol compared with that prepared with water. This is due to the lower latent heat capacity of ethanol, which requires less energy to vaporize compared with water. Through the rotational viscometer test, ethanol performs better in lowering the viscosity of asphalt binders, which is essential in allowing produc- tion processes at low temperatures, as well as a better workability and aggregate coating. Ethanol can be expelled from the foamed asphalt binders at a higher rate due to its lower boiling point and latent heat.展开更多
The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O_2 and H_2O. In present study, a microelectrode was applied to analyze O_2 in polyurethane foam cubes(PUFCs...The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O_2 and H_2O. In present study, a microelectrode was applied to analyze O_2 in polyurethane foam cubes(PUFCs) packed in a biofilter for SO_2 removal. The O_2 distribution varied with the density and water-containing rate(WCR) of PUFCs. The O_2 concentration dropped sharply from 10.2 to 0.8 mg/L from the surface to the center of a PUFC with 97.20%of WCR. The PUFCs with high WCR presented aerobic–anoxic–aerobic areas.Three-dimensional simulated images demonstrated that the structure of PUFCs with high WCR consisted of an aerobic "shell" and an anoxic "core", with high-density PUFCs featuring a larger anoxic area than low-density PUFCs. Moreover, the H_2O distribution in the PUFC was uneven and affected the O_2 concentration. Whereas aerobic bacteria were observed in the PUFC surface, facultative anaerobic microorganisms were found at the PUFC core, where the O_2 concentration was relatively low. O_2 and H_2O distributions differed in the PUFCs, and the distribution of microorganisms varied accordingly.展开更多
基金the National Science Foundation(NSF),which funded a research grant through the SusChem/Collaborative Research Program(award number: 1300286)
文摘Foamed asphalt typically relies on water as a foaming agent because water becomes gaseous at elevated temperatures, generating numerous tiny bubbles in the asphalt and causing spontaneous foaming. In this study, ethanol was used as a potential alternative to water as a foaming agent. Ethanol is expected to be a physical blowing agent in the same manner as water, except it requires less energy to foam due to its 78 ℃ boiling point. This study compares the performance of water and ethanol as foaming agents through the measurements of rotational viscosity, the reduction in temperature during foaming, and volatile loss. The ethanol-foamed asphalt binders were prepared at 80 ~C and 100 ~C, while the water-foamed asphalt binders were prepared at 100 ~C and 120 ~'C. Additionally, the rolling thin film oven (RTFO) was used to generate short-term aging of the foamed asphalt binders. A rotational viscometer was used to determine the viscosity of the asphalt binders at 80 ~C, 100 ~C, 120 ~C, 140 ~C, and 160 ~C. Overall, ethanol can function in the same manner as water but requires less energy to foam. It is proven based on the smaller drop in temperature of the asphalt binder foamed using ethanol compared with that prepared with water. This is due to the lower latent heat capacity of ethanol, which requires less energy to vaporize compared with water. Through the rotational viscometer test, ethanol performs better in lowering the viscosity of asphalt binders, which is essential in allowing produc- tion processes at low temperatures, as well as a better workability and aggregate coating. Ethanol can be expelled from the foamed asphalt binders at a higher rate due to its lower boiling point and latent heat.
基金financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2010ZX07319-001-03)the National Natural Science Foundation of China(No.51221892)
文摘The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O_2 and H_2O. In present study, a microelectrode was applied to analyze O_2 in polyurethane foam cubes(PUFCs) packed in a biofilter for SO_2 removal. The O_2 distribution varied with the density and water-containing rate(WCR) of PUFCs. The O_2 concentration dropped sharply from 10.2 to 0.8 mg/L from the surface to the center of a PUFC with 97.20%of WCR. The PUFCs with high WCR presented aerobic–anoxic–aerobic areas.Three-dimensional simulated images demonstrated that the structure of PUFCs with high WCR consisted of an aerobic "shell" and an anoxic "core", with high-density PUFCs featuring a larger anoxic area than low-density PUFCs. Moreover, the H_2O distribution in the PUFC was uneven and affected the O_2 concentration. Whereas aerobic bacteria were observed in the PUFC surface, facultative anaerobic microorganisms were found at the PUFC core, where the O_2 concentration was relatively low. O_2 and H_2O distributions differed in the PUFCs, and the distribution of microorganisms varied accordingly.