【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改...【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改进加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),以增强在昏暗光线下的车辆检测性能及对多尺度图像的处理能力,特别是对远处或部分遮挡的车辆;其次在主干网络引入可变型卷积(deformable convolutional networks,DCN),以增强模型对不同尺寸车辆的适应性;最后使用精确边界框回归的高效交并比损失函数(focal and efficient intersection over union loss,Focal-EIOU loss)替换高效交并比(efficient intersection over union,EIOU),进一步提升模型的稳定性。【结果】DB-YOLOv8n在自制车辆数据集上相比YOLOv8n,平均精度、精度和召回率分别提高了3.2%、3%和2%。【结论】本研究结果能为提高车辆检测的精确度提供理论参考。展开更多
针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Fo...针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。展开更多
文摘【目的】针对城市复杂环境下的车辆难识别问题,提出了基于YOLOv8n(you only look once version 8n)的改进模型DB-YOLOv8n(deformable block YOLOv8n)。【方法】首先在颈部网络融合通道注意力机制(efficient channel attention,ECA)和改进加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),以增强在昏暗光线下的车辆检测性能及对多尺度图像的处理能力,特别是对远处或部分遮挡的车辆;其次在主干网络引入可变型卷积(deformable convolutional networks,DCN),以增强模型对不同尺寸车辆的适应性;最后使用精确边界框回归的高效交并比损失函数(focal and efficient intersection over union loss,Focal-EIOU loss)替换高效交并比(efficient intersection over union,EIOU),进一步提升模型的稳定性。【结果】DB-YOLOv8n在自制车辆数据集上相比YOLOv8n,平均精度、精度和召回率分别提高了3.2%、3%和2%。【结论】本研究结果能为提高车辆检测的精确度提供理论参考。
文摘针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。