期刊文献+
共找到287篇文章
< 1 2 15 >
每页显示 20 50 100
基于Focal Loss改进LightGBM的供水管网毛刺数据检测
1
作者 薛浩 马静 郭小宇 《计算机与现代化》 2024年第9期74-81,90,共9页
针对数据不平衡导致的管网毛刺数据检测召回率偏低问题,提出一种Focal Loss改进LightGBM的管网毛刺数据检测方法。首先,结合管网毛刺数据的特点,针对性构造邻域相关特征。其次,将Focal Loss函数引入LightGBM,提高模型对难以检测的毛刺... 针对数据不平衡导致的管网毛刺数据检测召回率偏低问题,提出一种Focal Loss改进LightGBM的管网毛刺数据检测方法。首先,结合管网毛刺数据的特点,针对性构造邻域相关特征。其次,将Focal Loss函数引入LightGBM,提高模型对难以检测的毛刺样本的权重,并对Focal Loss不同的参数取值进行实验,以平衡精确率与召回率。最后,选择不同参数的Focal Loss进行模型融合,进一步提升模型对不平衡毛刺数据的检测性能。在某市供水管网的真实数据上进行实验,结果表明,对比基于交叉熵损失函数的单一模型,本文提出的Focal Loss改进后的融合模型在毛刺数据上召回率和F1值的提升幅度达33.3和18个百分点,但毛刺数据的精确率还有待进一步提升。本文所提方法从损失函数入手,动态调整难易样本的权重,有效地提升了不平衡数据下的毛刺数据的检测性能。 展开更多
关键词 异常检测 focal loss LightGBM 不平衡数据 毛刺数据
下载PDF
一种改进的Focal Loss在语义分割上的应用 被引量:10
2
作者 杨威 张建林 +1 位作者 徐智勇 赵春梅 《半导体光电》 CAS 北大核心 2019年第4期555-559,共5页
传统基于深度学习的语义分割方法使用的损失函数为交叉熵,而交叉熵并不能解决训练数据中的样本非均衡性问题。语义分割任务属于像素级分类,样本的非均衡性问题在其中体现得十分突出。文章提出了一种改进的Focal Loss作为损失函数来自动... 传统基于深度学习的语义分割方法使用的损失函数为交叉熵,而交叉熵并不能解决训练数据中的样本非均衡性问题。语义分割任务属于像素级分类,样本的非均衡性问题在其中体现得十分突出。文章提出了一种改进的Focal Loss作为损失函数来自动解决训练样本的非均衡性。该损失函数等同于在标准交叉熵上加上一个权重,该权重能够自动增加困难样本的交叉熵损失值,同时保持简单样本的交叉熵损失值。将Focal Loss作为DeepLabv3+的损失函数,并将DeepLabv3+的Backbone替换为ResNet-18,再使用Cityscapes数据集作为训练样本,分别使用交叉熵和Focal Loss作为损失函数来对模型进行训练。实验结果表明,改进的Focal Loss损失函数相比于交叉熵获得的语义分割精度更高,且能够有效缓解训练样本的非均衡性问题。 展开更多
关键词 深度学习 语义分割 focal loss DeepLabv3+
下载PDF
基于边界自适应SMOTE和Focal Loss函数改进LightGBM的信用风险预测模型 被引量:8
3
作者 陈海龙 杨畅 +1 位作者 杜梅 张颖宇 《计算机应用》 CSCD 北大核心 2022年第7期2256-2264,共9页
针对信用风险评估中数据集不平衡影响模型预测效果的问题,提出一种基于边界自适应合成少数类过采样方法(BA-SMOTE)和利用FocalLoss函数改进LightGBM损失函数的算法(FLLightGBM)相结合的信用风险预测模型。首先,在边界合成少数类过采样(B... 针对信用风险评估中数据集不平衡影响模型预测效果的问题,提出一种基于边界自适应合成少数类过采样方法(BA-SMOTE)和利用FocalLoss函数改进LightGBM损失函数的算法(FLLightGBM)相结合的信用风险预测模型。首先,在边界合成少数类过采样(Borderline-SMOTE)的基础上,引入自适应思想和新的插值方式,使每个处于边界的少数类样本生成不同数量的新样本,并且新样本的位置更靠近原少数类样本,以此来平衡数据集;其次,利用FocalLoss函数来改进LightGBM算法的损失函数,并以改进的算法训练新的数据集以得到最终结合BA-SMOTE方法和FLLightGBM算法建立的BA-SMOTE-FLLightGBM模型;最后,在LendingClub数据集上进行信用风险预测。实验结果表明,与其他不平衡分类算法RUSBoost、CUSBoost、KSMOTE-AdaBoost和AK-SMOTE-Catboost相比,所建立的模型在G-mean和AUC两个指标上都有明显的提升,提升了9.0%~31.3%和5.0%~14.1%。以上结果验证了所提出的模型在信用风险评估中具有更好的违约预测效果。 展开更多
关键词 信用风险 不平衡数据 过采样 LightGBM focalloss
下载PDF
融合GIoU和Focal loss的YOLOv3目标检测算法 被引量:27
4
作者 邹承明 薛榕刚 《计算机工程与应用》 CSCD 北大核心 2020年第24期214-222,共9页
YOLOv3目标检测算法检测速度快且精度较高,但存在对小目标检测能力不足、边界框定位不准确等问题。提出了一种基于YOLOv3改进的目标检测算法,该算法在YOLOv3的基础上,对网络中的残差块增加旁路连接,进一步进行特征重用,以提取更多的特... YOLOv3目标检测算法检测速度快且精度较高,但存在对小目标检测能力不足、边界框定位不准确等问题。提出了一种基于YOLOv3改进的目标检测算法,该算法在YOLOv3的基础上,对网络中的残差块增加旁路连接,进一步进行特征重用,以提取更多的特征信息。同时,采用GIoUloss作为边界框的损失,使网络朝着预测框与真实框重叠度较高的方向去优化。在损失函数中加入Focal loss,减小正负样本不平衡带来的误差。在PASCAL VOC和COCO数据集上的实验结果表明,该算法能够在不影响YOLOv3算法实时性的前提下,提高目标检测的mAP。该算法在PASCAL VOC 2007测试集上达到83.7mAP(IoU=0.5),在COCO测试集上比YOLOv3算法提升2.27mAP(IoU[0.5,0.95])。 展开更多
关键词 YOLOv3算法 目标检测 GIou loss focal loss
下载PDF
结合改进VGGNet和Focal Loss的人脸表情识别 被引量:27
5
作者 崔子越 皮家甜 +6 位作者 陈勇 杨杰之 鲜焱 吴至友 赵立军 曾绍华 吕佳 《计算机工程与应用》 CSCD 北大核心 2021年第19期171-178,共8页
针对目前表情识别准确率偏低,表情数据集中类别样本类间差异小、类内差异大以及误标注样本产生的误分类等问题,提出了一种结合改进VGGNet和Focal Loss的人脸表情识别算法。在迁移学习的基础上,通过设计新的输出模块对VGGNet模型进行改进... 针对目前表情识别准确率偏低,表情数据集中类别样本类间差异小、类内差异大以及误标注样本产生的误分类等问题,提出了一种结合改进VGGNet和Focal Loss的人脸表情识别算法。在迁移学习的基础上,通过设计新的输出模块对VGGNet模型进行改进,提升了模型的特征提取能力,能够较好地避免过拟合现象;通过设置概率阈值对Focal Loss进行改进,避免误标注样本对模型分类性能产生影响。实验结果表明,该模型在CK+、JAFFE以及FER2013数据集上的识别准确率分别达到了99.68%、97.61%和72.49%,在实际应用中泛化能力突出。 展开更多
关键词 表情识别 深度学习 迁移学习 focalloss 卷积神经网络
下载PDF
基于空洞卷积和Focal Loss的改进YOLOv3算法 被引量:14
6
作者 许腾 唐贵进 +1 位作者 刘清萍 鲍秉坤 《南京邮电大学学报(自然科学版)》 北大核心 2020年第6期100-108,共9页
为了进一步提升YOLOv3的小目标检测能力,文中提出将Darknet-53中的第2个残差块输出的特征图用混合空洞卷积处理后,与YOLOv3的8倍下采样特征图相融合,建立新的检测特征;同时,使用Focal Loss改进损失函数中的负样本置信度公式,缓解YOLOv3... 为了进一步提升YOLOv3的小目标检测能力,文中提出将Darknet-53中的第2个残差块输出的特征图用混合空洞卷积处理后,与YOLOv3的8倍下采样特征图相融合,建立新的检测特征;同时,使用Focal Loss改进损失函数中的负样本置信度公式,缓解YOLOv3的正负样本比例失衡问题。实验结果表明,在小目标数量占比为47.7%的特定测试集上,改进YOLOv3的平均准确率和召回率分别比原YOLOv3提高了8.8%和16%;在VOC测试集上,改进YOLOv3的平均精度均值比原YOLOv3提升了3.4%。 展开更多
关键词 小目标检测 样本不平衡 混合空洞卷积 focal loss
下载PDF
基于Focal Loss改进的GBDT模型对天津强对流灾害的预报 被引量:4
7
作者 路志英 汪永清 +1 位作者 孙晓磊 贾惠珍 《灾害学》 CSCD 北大核心 2020年第3期34-37,50,共5页
强对流灾害是气象研究的重点,不准确的强对流灾害天气预报往往给人们的安全以及社会经济造成影响。该文利用天津2006-2018年的地面气象观测站点的地面物理场数据,筛选出强对流灾害性天气过程,对天津强对流灾害天气进行研究。首先对地面... 强对流灾害是气象研究的重点,不准确的强对流灾害天气预报往往给人们的安全以及社会经济造成影响。该文利用天津2006-2018年的地面气象观测站点的地面物理场数据,筛选出强对流灾害性天气过程,对天津强对流灾害天气进行研究。首先对地面站点获取的数据通过主成分分析方法进行降维,然后构建基于Focal Loss改进的GBDT模型,最后通过五折交叉验证的方式进行训练与测试。结果表明,该模型对强对流灾害天气预报的命中率、误警率和临界成功指数上都有较好的表现,可为天津强对流天气的预报提供有效的依据。 展开更多
关键词 强对流灾害 主成分分析 focal loss GBDT模型 交叉验证
下载PDF
基于Focal Loss和卷积神经网络的入侵检测 被引量:5
8
作者 闫芮铵 张立臣 《计算机与现代化》 2021年第1期65-69,共5页
入侵检测是信息安全防护领域中的一个重要环节。随着网络技术的发展,主动防御网络入侵变得越来越重要,同时入侵数据变得更加海量、复杂和不平衡,这导致传统的入侵检测技术的检测性能比较低,因此如何提高入侵检测系统的性能对于不平衡数... 入侵检测是信息安全防护领域中的一个重要环节。随着网络技术的发展,主动防御网络入侵变得越来越重要,同时入侵数据变得更加海量、复杂和不平衡,这导致传统的入侵检测技术的检测性能比较低,因此如何提高入侵检测系统的性能对于不平衡数据集的检测性能是一项巨大的挑战。传统的CNN模型对于处理复杂的数据具有很好的性能,但是在处理不平衡数据集上的效果不是很好。为了解决这个问题,提出一种基于Focal Loss和卷积神经网络的入侵检测方法。与传统的卷积神经网络不同,该模型利用Focal Loss损失函数来解决数据不平衡问题,并在卷积层加入正则化方法(DropBlock)用来提高模型的泛化能力。采用KDD 99数据集进行的实验表明,该模型入侵检测的准确率和精确率比传统的入侵检测模型有所提高。 展开更多
关键词 入侵检测 网络安全 卷积神经网络 正则化 不平衡数据集 focal loss
下载PDF
基于Focal Loss的多特征融合地物小目标检测 被引量:6
9
作者 宋建辉 饶威 +1 位作者 于洋 刘砚菊 《火力与指挥控制》 CSCD 北大核心 2021年第1期20-24,31,共6页
针对无人机影像中地物车辆目标占整体像素不超过0.4%的小目标检测效果差的问题,在融合FPN结构的Faster R-CNN(FFRCNN)网络基础上,提出一种改进算法——FM-FFRCNN。利用Resnet-50网络进行特征提取,并联多个卷积核进行卷积操作实现多特征... 针对无人机影像中地物车辆目标占整体像素不超过0.4%的小目标检测效果差的问题,在融合FPN结构的Faster R-CNN(FFRCNN)网络基础上,提出一种改进算法——FM-FFRCNN。利用Resnet-50网络进行特征提取,并联多个卷积核进行卷积操作实现多特征融合,达到扩大感受野的效果,并通过检测模块进行回归与分类。同时,为解决模型中正负样本不平衡问题,采用Focal Loss损失函数抑制背景样本对损失的贡献值。实验结果表明:FM-FFRCNN模型在平均精度(Average Precision,AP)上较原先模型提升了19.7%。 展开更多
关键词 小目标检测 多特征融合 focal loss 信息融合
下载PDF
融合Focal Loss与典型卷积神经网络结构的水稻病害图像分类 被引量:2
10
作者 杨非凡 徐伟诚 +1 位作者 陈盛德 兰玉彬 《江苏农业科学》 北大核心 2023年第14期198-204,共7页
快速高效地识别水稻病害的种类并及时采取有效的防治措施对避免水稻减产具有重要意义,为解决人工识别水稻病害效率低、识别精度不高、深度学习样本不平衡导致识别准确率不高等问题,融合Focal Loss与4种典型卷积神经网络结构对7种水稻病... 快速高效地识别水稻病害的种类并及时采取有效的防治措施对避免水稻减产具有重要意义,为解决人工识别水稻病害效率低、识别精度不高、深度学习样本不平衡导致识别准确率不高等问题,融合Focal Loss与4种典型卷积神经网络结构对7种水稻病害进行分类识别。利用TensorFlow的Keras深度学习框架搭建卷积神经网络的图像识别分类系统,使用Focal Loss损失函数解决数据集不平衡导致识别准确率低的问题,采用ResNet50、ResNet101、MobileNetV2、VGG16作为特征提取骨干,对7种水稻病害进行识别。通过imgaug库增强数据,将13543张水稻病害图像按照9∶1的比例划分为训练集和验证集并参与训练模型,将1404张水稻病害图像作为测试集来验证模型的准确性。结果表明,所搭建的数据集中ResNet50、ResNet101、MobileNetV2、VGG16的识别准确率分别为98.06%、94.26%、92.47%、97.83%。可见,在融合Focal Loss损失函数的情况下,ResNet50作为特征提取骨干训练出的模型在水稻病害图像分类中拥有最高的准确率,该成果可在实际生产中实现水稻病害的自动分类识别,有助于水稻病害的防治工作。 展开更多
关键词 水稻病害识别 卷积神经网络 focal loss ResNet MobileNetV2 VGG16
下载PDF
一种结合Focal Loss的不平衡数据集提升树分类算法 被引量:4
11
作者 朱翌民 郭茹燕 +2 位作者 巨家骥 张帅 张维 《软件导刊》 2021年第11期65-69,共5页
针对不平衡数据集分类问题中存在的难易样本不平衡问题,提出在提升树算法的基础上结合Focal Loss的不平衡数据集分类算法。分别在HTRU3、Yeast3、Test的不平衡数据集上对该算法与Borderline-SMOTE结合梯度提升树算法进行比较。实验结果... 针对不平衡数据集分类问题中存在的难易样本不平衡问题,提出在提升树算法的基础上结合Focal Loss的不平衡数据集分类算法。分别在HTRU3、Yeast3、Test的不平衡数据集上对该算法与Borderline-SMOTE结合梯度提升树算法进行比较。实验结果表明,在HTRU2数据集上,该算法F1-score最高为0.970,而Borderline-SMOTE结合梯度提升树算法为0.972,虽然分类性能没有得到明显提升,但该算法仅需13次迭代便可收敛,而传统梯度提升树算法则需20次以上迭代才能收敛。在提升树模型中引入Focal Loss损失函数可有效提升模型收敛速度,且在一定程度上保持了模型分类性能。 展开更多
关键词 不平衡数据集 难分样本 易分样本 focal loss 梯度提升算法
下载PDF
基于Focal Loss-2函数的中文短文本情感分类研究 被引量:1
12
作者 李欢 郑静 《杭州电子科技大学学报(自然科学版)》 2019年第3期54-59,共6页
利用深度学习中的卷积神经网络CNN和长短期记忆人工神经网络LSTM两种方法,结合word2vec词向量工具,对互联网中文短文本平衡数据集进行情感分类,并与传统的机器学习方法进行比较,得到最优的模型。在不平衡数据集上,提出了基于Focal Loss... 利用深度学习中的卷积神经网络CNN和长短期记忆人工神经网络LSTM两种方法,结合word2vec词向量工具,对互联网中文短文本平衡数据集进行情感分类,并与传统的机器学习方法进行比较,得到最优的模型。在不平衡数据集上,提出了基于Focal Loss函数改进的二分类平衡交叉熵损失函数Focal Loss-2。实验表明:深度学习算法LSTM-word2vec模型分类准确率最高,达到93.13%;CNN-word2vec模型的训练时间最短,每轮用时27 s;在正类样本少时,Focal Loss-2函数比常用的交叉熵函数正类的模型评价F_1值提高了4%左右。统计检验表明:基于Focal Loss-2函数改进的模型在不平衡数据集上的分类性能显著优于以前的模型。 展开更多
关键词 情感分类 不平衡数据集 卷积神经网络 长短期记忆人工神经网络 focal loss-2
下载PDF
基于LightGBM和DNNFL的陷落柱识别方法研究与应用
13
作者 王怀秀 王慧 《矿业安全与环保》 CAS 北大核心 2024年第5期125-131,141,共8页
为了解决不平衡地震属性数据集中陷落柱识别准确率较低的问题,提出了一种基于轻梯度提升机(Light Gradient Boosting Machine,LightGBM)和利用焦点损失(Focal Loss)改进深度神经网络(Deep Neural Networks,DNN)相结合的陷落柱识别方法Li... 为了解决不平衡地震属性数据集中陷落柱识别准确率较低的问题,提出了一种基于轻梯度提升机(Light Gradient Boosting Machine,LightGBM)和利用焦点损失(Focal Loss)改进深度神经网络(Deep Neural Networks,DNN)相结合的陷落柱识别方法LightGBM-DNNF。首先通过相关性分析和重要性分析进行属性优选;其次提取LightGBM叶子节点的路径作为新的特征,并与原始数据集组合成新的数据集;最后输入到DNNFL模型中进行分类训练,预测地质构造类型。引入精确率(P)、召回率(R)、F1分数(F_(1-score))、曲线下面积(A_(UC))作为评价指标,基于3个矿区的数据集开展对比实验和消融实验。实验结果表明,与传统的机器学习和单一的集成学习算法相比,LightGBM-DNNFL模型的F_(1-score)和A_(UC)值均在93%以上,能有效识别陷落柱,且模型泛化能力更强。 展开更多
关键词 陷落柱识别 深度神经网络 focal loss LightGBM 不平衡分类
下载PDF
基于RF-FL-LightGBM算法的信用风险评估模型研究
14
作者 苗月 吴陈 《计算机与数字工程》 2024年第3期808-813,共6页
为了解决大数据环境下高维度稀疏的客户信用特征以及样本不平衡问题,从而提高客户的信用评估准确度,论文提出了基于RF-FL-LightGBM算法的信用风险评估模型。首先利用随机森林(RF)对高维数据进行重要性排序和筛选,剔除容易引起模型过度... 为了解决大数据环境下高维度稀疏的客户信用特征以及样本不平衡问题,从而提高客户的信用评估准确度,论文提出了基于RF-FL-LightGBM算法的信用风险评估模型。首先利用随机森林(RF)对高维数据进行重要性排序和筛选,剔除容易引起模型过度拟合和冗余无效的特征;其次将基于Focal Loss函数改进后的二分类平衡交叉嫡损失函数(FL)作为LightGBM模型的损失函数,以此改善正负样本不平衡导致模型准确度降低的情况,从而提高模型的分类性能。使用某金融租赁公司的历史客户数据集进行实验,结果表明,RF-FL-LightGBM模型的F1值、AUC值都明显高于XGBoost和LigthGBM模型。RF-FL-LightGBM算法不仅有效处理了高维稀疏不平衡样本数据,还提高了客户属性的分类精确度且执行效率更高。 展开更多
关键词 信用风险评估 随机森林 特征选取 focal loss LightGBM算法
下载PDF
基于VAE-GAN和FLCNN的不均衡样本轴承故障诊断方法 被引量:10
15
作者 张永宏 张中洋 +3 位作者 赵晓平 王丽华 邵凡 吕凯扬 《振动与冲击》 EI CSCD 北大核心 2022年第9期199-209,共11页
针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷... 针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。 展开更多
关键词 滚动轴承 变分自编码器(VAE) 生成对抗网络(GAN) 焦点损失(fl) 故障诊断
下载PDF
基于FCOS和ResNet50-FL的吊弦不受力识别方法 被引量:9
16
作者 陈强 彭继慎 +1 位作者 闫云凤 齐冬莲 《铁道学报》 EI CAS CSCD 北大核心 2021年第10期36-42,共7页
由受电弓长期运行引起的激励和振动不可避免地导致吊弦不受力,影响接触悬挂的结构高度和接触线高度,导致受电弓的受流质量下降。针对接触网吊弦不受力缺陷问题,提出一种基于深度学习的吊弦不受力识别方法,该方法采用全卷积一阶段目标检... 由受电弓长期运行引起的激励和振动不可避免地导致吊弦不受力,影响接触悬挂的结构高度和接触线高度,导致受电弓的受流质量下降。针对接触网吊弦不受力缺陷问题,提出一种基于深度学习的吊弦不受力识别方法,该方法采用全卷积一阶段目标检测器(FCOS)定位吊弦区域,采用添加焦点损失的ResNet50分类网络(ResNet50-FL)对吊弦不受力状态进行识别。在高速铁路接触网图像数据集上的对比实验表明,该方法能够更加准确地识别出吊弦不受力缺陷,具有较好的适应性和鲁棒性。 展开更多
关键词 缺陷识别 吊弦不受力 全卷积一阶段目标检测器 焦点损失
下载PDF
基于Focal损失SSDAE的变压器故障诊断方法 被引量:11
17
作者 武天府 刘征 +2 位作者 王志强 李劲松 李国锋 《电力工程技术》 北大核心 2021年第6期18-24,共7页
研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的... 研究变压器的故障诊断对电力系统安全稳定运行具有重大现实意义。以油中溶解气体特征为输入的传统变压器故障诊断方法在处理样本不平衡数据时具有较大的局限性。针对这一问题,文中提出一种基于Focal损失栈式稀疏降噪自编码器(SSDAE)的变压器故障诊断方法。该方法通过类别权重确定超参数,并在原始输入中加入高斯白噪声,有利于自编码器充分提取有效特征,进而得到有效的深度特征提取模型;采用Focal损失函数对模型进行优化,并利用Softmax分类器输出诊断结果。案例分析结果表明,与传统三比值法、反向传播神经网络(BPNN)和支持向量机(SVM)法等变压器故障诊断方法相比,文中方法可进一步提升诊断准确率。 展开更多
关键词 变压器 故障诊断 栈式稀疏降噪自编码器(SSDAE) Softmax分类器 focal损失 类别权重
下载PDF
Focal损失在图像情感分析上的应用研究 被引量:12
18
作者 傅博文 唐向宏 肖涛 《计算机工程与应用》 CSCD 北大核心 2020年第10期179-184,共6页
充分利用Focal损失函数具有挖掘困难样本和调节样本不平衡问题的特性,将其应用在基于神经网络的图像情感分析模型中。为了缓解训练数据集的类别样本不平衡问题,提升情感分类模型的训练效率,对Focal损失函数中参数设置进行了改进。该方... 充分利用Focal损失函数具有挖掘困难样本和调节样本不平衡问题的特性,将其应用在基于神经网络的图像情感分析模型中。为了缓解训练数据集的类别样本不平衡问题,提升情感分类模型的训练效率,对Focal损失函数中参数设置进行了改进。该方法通过类别权重大小来确定平衡参数α,并在神经网络模型训练的不同阶段,采用渐增方式对聚焦因子γ进行调节,然后将改进的Focal损失函数应用于图像情感分析模型的神经网络训练中。仿真实验表明,相比于交叉熵损失函数,改进的Focal损失函数能够提升神经网络对图像情感分析的性能。实验结果表明,所采用方法的准确率、宏召回率、宏精准率分别提升了0.5~2.3个百分点、0.4~3.9个百分点、0.5~3.3个百分点。 展开更多
关键词 图像情感分析 情感图像数据集 卷积神经网络 样本不平衡 focal损失函数
下载PDF
Vehicle Re-Identication Model Based on Optimized DenseNet121 with Joint Loss 被引量:12
19
作者 Xiaorui Zhang Xuan Chen +1 位作者 Wei Sun Xiaozheng He 《Computers, Materials & Continua》 SCIE EI 2021年第6期3933-3948,共16页
With the increasing application of surveillance cameras,vehicle re-identication(Re-ID)has attracted more attention in the eld of public security.Vehicle Re-ID meets challenge attributable to the large intra-class diff... With the increasing application of surveillance cameras,vehicle re-identication(Re-ID)has attracted more attention in the eld of public security.Vehicle Re-ID meets challenge attributable to the large intra-class differences caused by different views of vehicles in the traveling process and obvious inter-class similarities caused by similar appearances.Plentiful existing methods focus on local attributes by marking local locations.However,these methods require additional annotations,resulting in complex algorithms and insufferable computation time.To cope with these challenges,this paper proposes a vehicle Re-ID model based on optimized DenseNet121 with joint loss.This model applies the SE block to automatically obtain the importance of each channel feature and assign the corresponding weight to it,then features are transferred to the deep layer by adjusting the corresponding weights,which reduces the transmission of redundant information in the process of feature reuse in DenseNet121.At the same time,the proposed model leverages the complementary expression advantages of middle features of the CNN to enhance the feature expression ability.Additionally,a joint loss with focal loss and triplet loss is proposed in vehicle Re-ID to enhance the model’s ability to discriminate difcult-to-separate samples by enlarging the weight of the difcult-to-separate samples during the training process.Experimental results on the VeRi-776 dataset show that mAP and Rank-1 reach 75.5%and 94.8%,respectively.Besides,Rank-1 on small,medium and large sub-datasets of Vehicle ID dataset reach 81.3%,78.9%,and 76.5%,respectively,which surpasses most existing vehicle Re-ID methods. 展开更多
关键词 Vehicle re-identication densenet joint loss focal loss SE block
下载PDF
Clonality and allelotype analyses of focal nodular hyperplasia compared with hepatocellular adenoma and carcinoma 被引量:5
20
作者 Yi-Ran Cai Li Gong +8 位作者 Xiao-Ying Teng Hong-Tu Zhang Cheng-Feng Wang Guo-Lian Wei Lei Guo Fang Ding Zhi-Hua Liu Qin-Jing Pan Qin Su 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第37期4695-4708,共14页
AIM: To identify clonality and genetic alterations in focal nodular hyperplasia (FNH) and the nodules derived from it. METHODS: Twelve FNH lesions were examined. Twelve hepatocellular adenomas (HCAs) and 22 hepa... AIM: To identify clonality and genetic alterations in focal nodular hyperplasia (FNH) and the nodules derived from it. METHODS: Twelve FNH lesions were examined. Twelve hepatocellular adenomas (HCAs) and 22 hepatocellular carcinomas (HCCs) were used as references. Nodules of different types were identified and isolated from FNH by microdissection. An X-chromosome inactivation assay was employed to describe their clonality status. Loss of heterozygosity (LOH) was detected, using 57 markers, for genetic alterations.RESULTS: Nodules of altered hepatocytes (NAH), the putative precursors of HCA and HCC, were found in all the FNH lesions. Polyclonality was revealed in 10 FNH lesions from female patients, and LOH was not detected in any of the six FNH lesions examined, the results apparently showing their polyclonal nature. In contrast, monoclonality was demonstrated in all the eight HCAs and in four of the HCCs from females, and allelic imbalances were found in the HCAs (9/9) and HCCs (15/18), with chromosomal arms 11p, 13q and 17p affected in the former, and 6q, 8p, 11p, 16q and 17p affected in the latter lesions in high frequencies (≥ 30%). Monodonality was revealed in 21 (40%) of the 52 microdissected NAH, but was not found in any of the five ordinary nodules. LOH was found in all of the 13 NAH tested, being highly frequent at six loci on 8p, 11p, 13q and 17p. CONCLUSION: FNH, as a whole, is polyclonal, but some of the NAH lesions derived from it are already neoplastic and harbor similar allelic imbalances as HCAs. 展开更多
关键词 Clonality analysis focal nodular hyperplasia Hepatocellular adenoma Liver tumorigenesis loss of heterozygosity Nodules of altered hepatocytes
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部