Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum ...Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum spatial rotation angle.Our results indicate that the M_(S)6.4 mainshock is induced by a lateral strike slip fault(with a rake angle of~-165°)and a little normal-faulting component event along a nearly vertical plane(dipping angle~79° and strike~138°).Combining our results with high resolution catalog,we argue that the seismogenic fault of this earthquake sequence is a secondary fault western to the major Weixi-Qiaohou-Weishan fault.The focal mechanism evolution can be divided into three periods.During the first period,the foreshock sequence,the focal mechanism consistency is the highest(KA<36°);during the second period which is shortly after the mainshock,the focal mechanism shows strong variation with KA ranging from 8° to 110°;during the third period,the seismicity becomes weak and the focal mechanism of the earthquakes becomes more consistent than the second period(18°<KA<73°).We suggest that the KA,to some extent,represents the coherence between local tectonic stress regime and the stress state of each individual earthquake.Furthermore,high focal mechanism consistency and high linearity of seismic distribution may serve as indicators for the identification of foreshock sequence.展开更多
Using the maximum amplitude ratios of vertical component of P and S waves recorded by a regional network, 921 focal mechanisms of Dayao earthquake doublet sequence are determined by means of synthetic seismograms of a...Using the maximum amplitude ratios of vertical component of P and S waves recorded by a regional network, 921 focal mechanisms of Dayao earthquake doublet sequence are determined by means of synthetic seismograms of a point source of dislocation in a plane layered medium. Among them, 389 focal mechanisms are in the aftershock sequence of M6.2 earthquake occurred on 21 July, 2003 and the other 532 focal mechanisms are in the aftershock sequence of M6.1 earthquake occurred on 16 October, 2003 in Dayao, Yurman. The focal mechanism consistent parameter a of the two aftershock sequences are calculated and analyzed. According to the focal mechanism consistent parameter a, the focal mechanisms of the first aftershock sequence are more consistent than those of the second. According to the comparison of CMT solutions of the two M6 earthquakes, the physical mechanism of the doublet in the intra-plate earthquake is very complex, and many processes are involved and interacted with each other. This doublet provides insights into earthquake clustering, triggering and stress cycling.展开更多
The displacement field generated by aftershocks in Landers earthquake fault zone and its adjacent areas is calculated in this study. The result is compared with the displacement field of the main shock calculated by c...The displacement field generated by aftershocks in Landers earthquake fault zone and its adjacent areas is calculated in this study. The result is compared with the displacement field of the main shock calculated by co-seismic slip model of Wald and Heaton (1994). The result shows that the direction of displacement generated by aftershocks in Landers seismic fault plane and its adjacent areas is consistent with that generated by main shock. The rupture of aftershock is generally inherited from main shock. The displacement generated by aftershocks is up to an order of centimeter and can be measured by GPS sites nearby. So when we use geodetic data measured after earthquake to study the geophysical problems such as crustal viscosity structure, afterslip distribution, etc., only the displacement field generated by aftershocks considered, can uncertainty be reduced to minimum and realistic result be obtained.展开更多
Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely S...Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.展开更多
基金sponsored by Earthquake monitoring, forecasting, and scientific research project of China Earthquake Administration(3JH-2021046)Sub-projects of The National Key Research and Development Program of China(2018YFC150330303)the Academician Workstation of Chen Yong of Yunnan Province (2014IC007).
文摘Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum spatial rotation angle.Our results indicate that the M_(S)6.4 mainshock is induced by a lateral strike slip fault(with a rake angle of~-165°)and a little normal-faulting component event along a nearly vertical plane(dipping angle~79° and strike~138°).Combining our results with high resolution catalog,we argue that the seismogenic fault of this earthquake sequence is a secondary fault western to the major Weixi-Qiaohou-Weishan fault.The focal mechanism evolution can be divided into three periods.During the first period,the foreshock sequence,the focal mechanism consistency is the highest(KA<36°);during the second period which is shortly after the mainshock,the focal mechanism shows strong variation with KA ranging from 8° to 110°;during the third period,the seismicity becomes weak and the focal mechanism of the earthquakes becomes more consistent than the second period(18°<KA<73°).We suggest that the KA,to some extent,represents the coherence between local tectonic stress regime and the stress state of each individual earthquake.Furthermore,high focal mechanism consistency and high linearity of seismic distribution may serve as indicators for the identification of foreshock sequence.
基金supported by the Program of the Eleventh Five-year Plan of China(2006BA-01B02-01-01)
文摘Using the maximum amplitude ratios of vertical component of P and S waves recorded by a regional network, 921 focal mechanisms of Dayao earthquake doublet sequence are determined by means of synthetic seismograms of a point source of dislocation in a plane layered medium. Among them, 389 focal mechanisms are in the aftershock sequence of M6.2 earthquake occurred on 21 July, 2003 and the other 532 focal mechanisms are in the aftershock sequence of M6.1 earthquake occurred on 16 October, 2003 in Dayao, Yurman. The focal mechanism consistent parameter a of the two aftershock sequences are calculated and analyzed. According to the focal mechanism consistent parameter a, the focal mechanisms of the first aftershock sequence are more consistent than those of the second. According to the comparison of CMT solutions of the two M6 earthquakes, the physical mechanism of the doublet in the intra-plate earthquake is very complex, and many processes are involved and interacted with each other. This doublet provides insights into earthquake clustering, triggering and stress cycling.
基金National Natural Science Foundation of China (40374012) and National Basic Key Project (2002CCA04500).
文摘The displacement field generated by aftershocks in Landers earthquake fault zone and its adjacent areas is calculated in this study. The result is compared with the displacement field of the main shock calculated by co-seismic slip model of Wald and Heaton (1994). The result shows that the direction of displacement generated by aftershocks in Landers seismic fault plane and its adjacent areas is consistent with that generated by main shock. The rupture of aftershock is generally inherited from main shock. The displacement generated by aftershocks is up to an order of centimeter and can be measured by GPS sites nearby. So when we use geodetic data measured after earthquake to study the geophysical problems such as crustal viscosity structure, afterslip distribution, etc., only the displacement field generated by aftershocks considered, can uncertainty be reduced to minimum and realistic result be obtained.
基金National Key Basic Research Development and Programming Project (2004CB418404) and Joint Seismological Science Foundation (105004).
文摘Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.