期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO
1
作者
曹雨淇
徐慧英
+4 位作者
朱信忠
黄晓
陈晨
周思瑜
盛轲
《计算机工程与科学》
CSCD
北大核心
2024年第10期1825-1834,共10页
在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换...
在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取。引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题。采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题。实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5:0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求。
展开更多
关键词
目标检测
打架斗殴
YOLOv8
EfficientRep
FocalNeXt
focal-diou
下载PDF
职称材料
一种改进YOLOv3的手势识别算法
被引量:
8
2
作者
睢丙东
张湃
王晓君
《河北科技大学学报》
CAS
北大核心
2021年第1期22-29,共8页
为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法。首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为...
为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法。首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为坐标误差损失函数,用改进后的Focal损失函数作为边界框置信度损失函数,目标分类损失函数以交叉熵作为损失函数。结果表明,将改进的YOLOv3手势识别算法用于手势检测中,mAP指标达到90.38%,较改进前提升了6.62%,FPS也提升了近2倍。采用改进的YOLOv3方法训练得到的新模型,识别手势精度更高,检测速度更快,整体识别效率大幅提升,平衡了简单样本和困难样本的损失权重,有效提高了模型的训练质量和泛化能力。
展开更多
关键词
计算机神经网络
YOLOv3
目标检测
手势识别
DIoU
Focal损失函数
下载PDF
职称材料
题名
基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO
1
作者
曹雨淇
徐慧英
朱信忠
黄晓
陈晨
周思瑜
盛轲
机构
浙江师范大学计算机科学与技术学院(人工智能学院)
浙江师范大学教育学院
出处
《计算机工程与科学》
CSCD
北大核心
2024年第10期1825-1834,共10页
基金
国家自然科学基金(62376252,61976196)
浙江省自然科学基金重点项目(LZ22F030003)
国家级大学生创新创业训练计划项目创新训练重点项目(202310345042)。
文摘
在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要。结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁。因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO。EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取。引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题。采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题。实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5:0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求。
关键词
目标检测
打架斗殴
YOLOv8
EfficientRep
FocalNeXt
focal-diou
Keywords
object detection
fighting
YOLOv8
EfficientRep
FocalNeXt
focal-diou
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
一种改进YOLOv3的手势识别算法
被引量:
8
2
作者
睢丙东
张湃
王晓君
机构
河北科技大学信息科学与工程学院
出处
《河北科技大学学报》
CAS
北大核心
2021年第1期22-29,共8页
基金
国防科技重点实验室项目(6142205190401)。
文摘
为了解决YOLOv3算法在手势识别中存在识别精度低及易受光照条件影响的问题,提出了一种改进的YOLOv3手势识别算法。首先,在原来3个检测尺度上新增加1个更小的检测尺度,提高对小目标的检测能力;其次,以DIoU代替原来的均方差损失函数作为坐标误差损失函数,用改进后的Focal损失函数作为边界框置信度损失函数,目标分类损失函数以交叉熵作为损失函数。结果表明,将改进的YOLOv3手势识别算法用于手势检测中,mAP指标达到90.38%,较改进前提升了6.62%,FPS也提升了近2倍。采用改进的YOLOv3方法训练得到的新模型,识别手势精度更高,检测速度更快,整体识别效率大幅提升,平衡了简单样本和困难样本的损失权重,有效提高了模型的训练质量和泛化能力。
关键词
计算机神经网络
YOLOv3
目标检测
手势识别
DIoU
Focal损失函数
Keywords
computer neural network
YOLOv3
object detection
gesture recognition
DIoU
Focal loss function
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO
曹雨淇
徐慧英
朱信忠
黄晓
陈晨
周思瑜
盛轲
《计算机工程与科学》
CSCD
北大核心
2024
0
下载PDF
职称材料
2
一种改进YOLOv3的手势识别算法
睢丙东
张湃
王晓君
《河北科技大学学报》
CAS
北大核心
2021
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部