期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
1
作者 刘迪 王兴玉 +2 位作者 李泽众 马肖燕 李世亮 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期622-626,共5页
Uniaxial pressure or strain can introduce a symmetry-breaking distortion on the lattice and may alter the ground states of a material. Compared to hydrostatic pressure, a unique feature of the uniaxial-pressure measur... Uniaxial pressure or strain can introduce a symmetry-breaking distortion on the lattice and may alter the ground states of a material. Compared to hydrostatic pressure, a unique feature of the uniaxial-pressure measurements is that a tensile force can be applied and thus a “negative” pressure can be achieved. In doing so, both ends of the sample are usually glued on the frame of the uniaxial-pressure device. The maximum force that can be applied onto the sample is sometimes limited by the shear strength of the glue, the quality of the interface between the sample and the glue, etc. Here we use focused ion beam to reduce the width of the middle part of the sample, which can significantly increase the effective pressure applied on the sample. By applying this technique to a home-made piezobender-based uniaxial-pressure device, we can easily increase the effective pressure by one or two orders of magnitude as shown by the change of the superconducting transition temperature of an iron-based superconductor. Our method thus provides a possible way to increase the upper limit of the pressure for the uniaxial-pressure devices. 展开更多
关键词 uniaxial pressure iron-based superconductors focused-ion-beam
下载PDF
Microscale Crystalline Rare-Earth Doped Resonators for Strain-Coupled Optomechanics
2
作者 Jean-François Motte Nicolas Galland +7 位作者 Jérôme Debray Alban Ferrier Philippe Goldner Nemenja Lucic Shuo Zhang Bess Fang Yann Le Coq Signe Seidelin 《Journal of Modern Physics》 2019年第11期1342-1352,共11页
Rare-earth ion doped crystals for hybrid quantum technologies are an area of growing interest in the solid-state physics community. We have earlier theoretically proposed a hybrid scheme of a mechanical resonator whic... Rare-earth ion doped crystals for hybrid quantum technologies are an area of growing interest in the solid-state physics community. We have earlier theoretically proposed a hybrid scheme of a mechanical resonator which is fabricated out of a rare-earth doped mono-crystalline structure. The rare-earth ion dopants have absorption energies which are sensitive to crystal strain, and it is thus possible to couple the ions to the bending motion of the crystal cantilever. This type of resonator can be useful for either investigating the laws of quantum physics with material objects or for applications such as sensitive force-sensors. Here, we present the design and fabrication method based on focused-ion-beam etching techniques which we have successfully employed in order to create such microscale resonators, as well as the design of the environment which will allow studying the quantum behavior of the resonators. 展开更多
关键词 Rare-Earth Doped Crystals Mechanical Resonators OPTOMECHANICS Quantum Physics Strain-Coupling Spectral Hole Burning focused-ion-beam Etching Techniques
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部