The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning s...The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.展开更多
基金Supported by the National Defense Basic Foundation of China B2420710007
文摘The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.