This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium,NH4+,nitrate,NO3-,and sulfate,SO24-,during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban...This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium,NH4+,nitrate,NO3-,and sulfate,SO24-,during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou,China.A total of 546 samples were collected between 1 April and 8 May 2012.The samples were analyzed and classified as clear,haze or fog depending on visibility and relative humidity (RH).The contribution of SIA species to PM2.5 mass increased to ~50% during haze and fog.The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes.Nitrate mass exceeded sulfate mass during haze,while near equal concentrations were observed during fog episodes.The role of RH on the correlation between concentrations of SIA and visibility was examined,with optimal correlation at 60%-70% RH.The total acidity during clear,haze and fog periods was 42.38,48.38 and 45.51 nmol m-3,respectively,indicating that sulfate,nitrate and chloride were not neutralized by ammonium during any period.The nitrate to sulfate molar ratio,as a function of the ammonium to sulfate molar ratio,indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods.During haze and fog,the nitrate oxidation ratio increased by a factor of 1.6-1.7,while the sulfur oxidation ratio increased by a factor of 1.2-1.5,indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.展开更多
This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentr...This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.展开更多
Long-time large-area haze weather appeared in Wuhan on June 11, 2012. It was monitored that PM2.5 hourly concentration obviously rose, and peak value reached 658 μg/m3. OC and PM2.5 presented high correlation, and co...Long-time large-area haze weather appeared in Wuhan on June 11, 2012. It was monitored that PM2.5 hourly concentration obviously rose, and peak value reached 658 μg/m3. OC and PM2.5 presented high correlation, and correlation coefficient was 0.96. OC daily average concentration occupied 10% -20% in PM2.5, and difference was big between haze and normal weather. EC occupied 5%, and difference was very small between haze and normal weather. By analyzing change trend of OC/EC, it was found that OC/EC presented increasing trend in late May and was even higher than that during 11 -15 June. It was clear that biomass combustion taking straw as the representation has started in late May. But two strong precipitation on May 29 and June 6 inhibited haze weather, and specific meteorological condition caused haze on June 11. Proportion of SOC to OC reached 14% -70%, illustrating that daily difference of secondary photochemical reaction was very big in Wuhan. OC/EC values were respectively 2.7, 3.5 and 4.2 in May, June and haze period. SOC daily means were respectively (5.33 ±4.77) and (32.5 ±23.4) μg/m^3 in May and haze period. Major pollution source of haze weather was biomass combustion, and haze occurrence had very big relationship with special meteorological condition.展开更多
The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianji...The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianjin Hebei experienced a seven-day extreme haze pollution episode with peak PM2.5(particulate matter(PM)with an aerodynamic diameter≤2.5μm)concentration of 727μg m 3.Considering the in uence of meteorological conditions on pollu-tant evolution,the e ects of varying initial conditions and lateral boundary conditions(LBCs)of the WRF-Chem model on PM2.5 concentration variation were investigated through ensemble methods.A control run(CTRL)and three groups of ensemble experiments(INDE,BDDE,INBDDE)were carried out based on difierent initial conditions and LBCs derived from ERA5 reanalysis data and its 10 ensemble members.The CTRL run reproduced the meteorological conditions and the overall life cycle of the haze event reasonably well,but failed to capture the intense oscillation of the instantaneous PM2.5 concentration.However,the ensemble forecasting showed a considerable advantage to some extent.Compared with the CTRL run,the root-mean-square error(RMSE)of PM2.5 concentration decreased by 4.33%,6.91%,and 8.44%in INDE,BDDE and INBDDE,respectively,and the RMSE decreases of wind direction(5.19%,8.89%and 9.61%)were the dominant reason for the improvement of PM2.5 concentration in the three ensemble experiments.Based on this case,the ensemble scheme seems an e ective method to improve the prediction skill of wind direction and PM2.5 concentration by using the WRF-Chem model.展开更多
Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention a...Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention and control of air pollution in key area. Air quality models can identify and quantify the regional contribution of haze pollution and its key components with the help of numerical simulation, but it is difficult to be applied to larger spatial scale due to the complexity of model parameters. The time series analysis can recognize the existence of spatial interaction of haze pollution between cities, but it has not yet been used to further identify the spatial sources of haze pollution in large scale. Using econometric framework of time series analysis, this paper developed a new approach to perform spatial source apportionment. We applied this approach to calculate the contribution from spatial sources of haze pollution in China, using the monitoring data of particulate matter(PM_(2.5)) across 161 Chinese cities. This approach overcame the limitation of numerical simulation that the model complexity increases at excess with the expansion of sample range, and could effectively deal with severe large-scale haze episodes.展开更多
Characteristics and cause of the fog-haze event in East China in January 2013 were analyzed with the meteorological conventional observation data and atmospheric composition observation data. Results showed that fog o...Characteristics and cause of the fog-haze event in East China in January 2013 were analyzed with the meteorological conventional observation data and atmospheric composition observation data. Results showed that fog or haze days in east area of Southwest China and most areas of central east China were more than 20 days in this month, especially in east of North China, Huanghuai and Jianghuai regions,that were 10 -15 days more than in the same period of normal years. 500 hPa circulation presented zonal type, cold air wasn't active, south-branch trough was weaker, and precipitation amounts was small, which was the weather background of the extreme fog and haze. Northwest airflow at upper layer of East Asia mid-high latitude,less cloud,ground temperature reduction at night, and warm dry air coverd at 850 hPa that led to temperature inversion near surface layer,which was the key thermal factor of fog and haze formation. High humidity near the ground ,weak horizontal wind speed, and weak ascending motion ,which were not favorable for horizontal diffusion and vertical exchange of water vapor and pollutant but were the dynamic factors of maintaining fog and haze. Whether there was a water vapor saturated layer performance in relative humidity /〉90% below 925 hPa or not can be looked as a basis of distinguishing between fog and haze.展开更多
The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on...The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP.展开更多
Adapting daily meteorological data provided by China International Exchange Station, and using principal component analysis of meteorological index for dimension reduction comprehensive, the regression analysis model ...Adapting daily meteorological data provided by China International Exchange Station, and using principal component analysis of meteorological index for dimension reduction comprehensive, the regression analysis model between PM2.5 and comprehensive index is established, by making use of Eviews time series modeling of the comprehensive principal component, finally puts forward opinions and suggestions aim at the regression analysis results of using artificial rainfall to ease haze.展开更多
The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between...The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.展开更多
Haze and fog are both low visibility events, but with different physical properties. Haze is caused by the increase of aerosol loading or the hygroscopic growth of aerosol at high relative humidity, whereas visibility...Haze and fog are both low visibility events, but with different physical properties. Haze is caused by the increase of aerosol loading or the hygroscopic growth of aerosol at high relative humidity, whereas visibility degradation in fog is due to the light scattering of fog droplets, which are transited from aerosols via activation. Based on the difference of physical properties between haze and fog, this study presents a novel method to distinguish haze and fog using real time measurements of PM2.5, visibility, and relative humidity. In this method, a criterion can be developed based on the local historical data of particle number size distributions and aerosol hygroscopicity. Low visibility events can be classified into haze and fog according to this criterion.展开更多
The corrosion behavior of pure Magnesium(Mg)in a Mg(OH)2-saturated solution containing different individual constituents of PM2.5 in haze were studied by hydrogen evolution,weight loss and electrochemical experiments....The corrosion behavior of pure Magnesium(Mg)in a Mg(OH)2-saturated solution containing different individual constituents of PM2.5 in haze were studied by hydrogen evolution,weight loss and electrochemical experiments.The results indicated that the corrosivity of these constituents to pure Mg decreased in the following order:(NH4)2SO4>Haze-contaminated-solution>NH4NO3>NH4Cl>NaCl≈KCl≈Na2SO4≈MgCl2≈CaSO4>Mg(OH)2(basic solution)>Ca(NO3)2.Possible mechanisms behind the different corrosion behaviors of Mg in response to these constituents were also briefly discussed in this paper.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 21190053 and 21177025)the Shanghai Science and Technology Commission of Shanghai Municipality (Grant Nos. 12DJ1400100 and 13XD 1400700)the Priority Fields for Ph.D. Programs Foundation of the Ministry of Education of China (Grant No.20110071130003)
文摘This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium,NH4+,nitrate,NO3-,and sulfate,SO24-,during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou,China.A total of 546 samples were collected between 1 April and 8 May 2012.The samples were analyzed and classified as clear,haze or fog depending on visibility and relative humidity (RH).The contribution of SIA species to PM2.5 mass increased to ~50% during haze and fog.The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes.Nitrate mass exceeded sulfate mass during haze,while near equal concentrations were observed during fog episodes.The role of RH on the correlation between concentrations of SIA and visibility was examined,with optimal correlation at 60%-70% RH.The total acidity during clear,haze and fog periods was 42.38,48.38 and 45.51 nmol m-3,respectively,indicating that sulfate,nitrate and chloride were not neutralized by ammonium during any period.The nitrate to sulfate molar ratio,as a function of the ammonium to sulfate molar ratio,indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods.During haze and fog,the nitrate oxidation ratio increased by a factor of 1.6-1.7,while the sulfur oxidation ratio increased by a factor of 1.2-1.5,indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.
文摘This study aims to assess and compare levels of particulate matter(PM10 and PM2.5)in urban and industrial areas in Malaysia during haze episodes,which typically occur in the south west monsoon season.The high concentrations of atmospheric particles are mainly due to pollution from neighbouring countries.Daily PM concentrations were analysed for urban and industrial areas including Alor Setar,Tasek,Shah Alam,Klang,Bandaraya Melaka,Larkin,Balok Baru,and Kuala Terengganu in 2018 and 2019.The analysis employed spatiotemporal to examine how PM levels were distributed.The data summary revealed that PM levels in all study areas were right-skewed,indicating the occurrence of high particulate events.Significant peaks in PM concentrations during haze events were consistently observed between June and October,encompassing the south west monsoon and inter-monsoon periods.The study on acute respiratory illnesses primarily focused on Selangor.Analysis revealed that Klang had the highest mean number of inpatient cases for acute exacerbation of bronchial asthma(AEBA)and acute exacerbation of chronic obstructive pulmonary disease(AECOPD)with values of 260.500 and 185.170,respectively.Similarly,for outpatient cases of AEBA and AECOPD,Klang had the highest average values of 41.67 and 14.00,respectively.Shah Alam and Sungai Buloh did not show a significant increase in cases during periods of biomass burning.The statistical analysis concluded that higher concentrations of PM were associated with increased hospital admissions,particularly from June to September,as shown in the bar diagram.Haze episodes were associated with more healthcare utilization due to haze-related respiratory illnesses,seen in higher inpatient and outpatient visits(p<0.05).However,seasonal variability had minimal impact on healthcare utilization.These findings offer a comprehensive assessment of PM levels during historic haze episodes,providing valuable insights for authorities to develop policies and guidelines for effective monitoring and mitigation of the negative impacts of haze events.
文摘Long-time large-area haze weather appeared in Wuhan on June 11, 2012. It was monitored that PM2.5 hourly concentration obviously rose, and peak value reached 658 μg/m3. OC and PM2.5 presented high correlation, and correlation coefficient was 0.96. OC daily average concentration occupied 10% -20% in PM2.5, and difference was big between haze and normal weather. EC occupied 5%, and difference was very small between haze and normal weather. By analyzing change trend of OC/EC, it was found that OC/EC presented increasing trend in late May and was even higher than that during 11 -15 June. It was clear that biomass combustion taking straw as the representation has started in late May. But two strong precipitation on May 29 and June 6 inhibited haze weather, and specific meteorological condition caused haze on June 11. Proportion of SOC to OC reached 14% -70%, illustrating that daily difference of secondary photochemical reaction was very big in Wuhan. OC/EC values were respectively 2.7, 3.5 and 4.2 in May, June and haze period. SOC daily means were respectively (5.33 ±4.77) and (32.5 ±23.4) μg/m^3 in May and haze period. Major pollution source of haze weather was biomass combustion, and haze occurrence had very big relationship with special meteorological condition.
基金supported by the National Basic Research(973)Program of China [grant number2015CB954102]the National Natural Science Foundation of China [grant number 41475043]the National Key R&D Program of China [grant number 2018YFC1507403]
文摘The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianjin Hebei experienced a seven-day extreme haze pollution episode with peak PM2.5(particulate matter(PM)with an aerodynamic diameter≤2.5μm)concentration of 727μg m 3.Considering the in uence of meteorological conditions on pollu-tant evolution,the e ects of varying initial conditions and lateral boundary conditions(LBCs)of the WRF-Chem model on PM2.5 concentration variation were investigated through ensemble methods.A control run(CTRL)and three groups of ensemble experiments(INDE,BDDE,INBDDE)were carried out based on difierent initial conditions and LBCs derived from ERA5 reanalysis data and its 10 ensemble members.The CTRL run reproduced the meteorological conditions and the overall life cycle of the haze event reasonably well,but failed to capture the intense oscillation of the instantaneous PM2.5 concentration.However,the ensemble forecasting showed a considerable advantage to some extent.Compared with the CTRL run,the root-mean-square error(RMSE)of PM2.5 concentration decreased by 4.33%,6.91%,and 8.44%in INDE,BDDE and INBDDE,respectively,and the RMSE decreases of wind direction(5.19%,8.89%and 9.61%)were the dominant reason for the improvement of PM2.5 concentration in the three ensemble experiments.Based on this case,the ensemble scheme seems an e ective method to improve the prediction skill of wind direction and PM2.5 concentration by using the WRF-Chem model.
基金supposed by Shandong Natural Science Foundation[Grant number:ZR2016GM03]Ministry of Education[Grant number:17YJA790054]
文摘Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention and control of air pollution in key area. Air quality models can identify and quantify the regional contribution of haze pollution and its key components with the help of numerical simulation, but it is difficult to be applied to larger spatial scale due to the complexity of model parameters. The time series analysis can recognize the existence of spatial interaction of haze pollution between cities, but it has not yet been used to further identify the spatial sources of haze pollution in large scale. Using econometric framework of time series analysis, this paper developed a new approach to perform spatial source apportionment. We applied this approach to calculate the contribution from spatial sources of haze pollution in China, using the monitoring data of particulate matter(PM_(2.5)) across 161 Chinese cities. This approach overcame the limitation of numerical simulation that the model complexity increases at excess with the expansion of sample range, and could effectively deal with severe large-scale haze episodes.
基金Supported by Special Item of Public Welfare Industry(Meteorology) Science Research,China(GYHY201306015)National Science and Technology Support Plan Item,China(2014BAC16B02)
文摘Characteristics and cause of the fog-haze event in East China in January 2013 were analyzed with the meteorological conventional observation data and atmospheric composition observation data. Results showed that fog or haze days in east area of Southwest China and most areas of central east China were more than 20 days in this month, especially in east of North China, Huanghuai and Jianghuai regions,that were 10 -15 days more than in the same period of normal years. 500 hPa circulation presented zonal type, cold air wasn't active, south-branch trough was weaker, and precipitation amounts was small, which was the weather background of the extreme fog and haze. Northwest airflow at upper layer of East Asia mid-high latitude,less cloud,ground temperature reduction at night, and warm dry air coverd at 850 hPa that led to temperature inversion near surface layer,which was the key thermal factor of fog and haze formation. High humidity near the ground ,weak horizontal wind speed, and weak ascending motion ,which were not favorable for horizontal diffusion and vertical exchange of water vapor and pollutant but were the dynamic factors of maintaining fog and haze. Whether there was a water vapor saturated layer performance in relative humidity /〉90% below 925 hPa or not can be looked as a basis of distinguishing between fog and haze.
基金The work was financially supported by National Natural Science Fund of China,specific grant numbers were 61371143 and 61662033initials of authors who received the grants were respectively Z.YM,H.L,and the URLs to sponsors’websites was http://www.nsfc.gov.cn/.This paper was supported by National Natural Science Fund of China(Grant Nos.61371143,61662033).
文摘The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP.
文摘Adapting daily meteorological data provided by China International Exchange Station, and using principal component analysis of meteorological index for dimension reduction comprehensive, the regression analysis model between PM2.5 and comprehensive index is established, by making use of Eviews time series modeling of the comprehensive principal component, finally puts forward opinions and suggestions aim at the regression analysis results of using artificial rainfall to ease haze.
基金supported by the National Excellent Youth Foundation of China (No. 20625722)the China Postdoctoral Science Foundation (No. 20080430396)
文摘The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.
基金supported by the Basic Research Program of China(Grant No.2011CB403402)the Basic Research Fund of Chinese Academy of Meteorological Sciences(Grant No.2008Z011)
文摘Haze and fog are both low visibility events, but with different physical properties. Haze is caused by the increase of aerosol loading or the hygroscopic growth of aerosol at high relative humidity, whereas visibility degradation in fog is due to the light scattering of fog droplets, which are transited from aerosols via activation. Based on the difference of physical properties between haze and fog, this study presents a novel method to distinguish haze and fog using real time measurements of PM2.5, visibility, and relative humidity. In this method, a criterion can be developed based on the local historical data of particle number size distributions and aerosol hygroscopicity. Low visibility events can be classified into haze and fog according to this criterion.
基金This research was supported by National Natural Science Foundation of China(No.51731008)National Environment Corrosion Platform of China.
文摘The corrosion behavior of pure Magnesium(Mg)in a Mg(OH)2-saturated solution containing different individual constituents of PM2.5 in haze were studied by hydrogen evolution,weight loss and electrochemical experiments.The results indicated that the corrosivity of these constituents to pure Mg decreased in the following order:(NH4)2SO4>Haze-contaminated-solution>NH4NO3>NH4Cl>NaCl≈KCl≈Na2SO4≈MgCl2≈CaSO4>Mg(OH)2(basic solution)>Ca(NO3)2.Possible mechanisms behind the different corrosion behaviors of Mg in response to these constituents were also briefly discussed in this paper.