In this paper, we investigate symmetries of the new (4+1)-dimensional Fokas equation, including point symmetries and the potential symmetries. We firstly employ the algorithmic procedure of computing the point symm...In this paper, we investigate symmetries of the new (4+1)-dimensional Fokas equation, including point symmetries and the potential symmetries. We firstly employ the algorithmic procedure of computing the point symmetries. And then we transform the Fokas equation into a potential system and gain the potential symmetries of Fokas equation. Finally, we use the obtained point symmetries wave solutions and other solutions of the Fokas equation. and some constructive methods to get some doubly periodic In particular, some solitary wave solutions are also given.展开更多
Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge t...Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.60821002the National Key Basic Research Program of China under Grant No.2004CB318000
文摘In this paper, we investigate symmetries of the new (4+1)-dimensional Fokas equation, including point symmetries and the potential symmetries. We firstly employ the algorithmic procedure of computing the point symmetries. And then we transform the Fokas equation into a potential system and gain the potential symmetries of Fokas equation. Finally, we use the obtained point symmetries wave solutions and other solutions of the Fokas equation. and some constructive methods to get some doubly periodic In particular, some solitary wave solutions are also given.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12326305,11931017,and 12271490)the Excellent Youth Science Fund Project of Henan Province(Grant No.242300421158)+2 种基金the Natural Science Foundation of Henan Province(Grant No.232300420119)the Excellent Science and Technology Innovation Talent Support Program of ZUT(Grant No.K2023YXRC06)Funding for the Enhancement Program of Advantageous Discipline Strength of ZUT(2022)。
文摘Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.