Autism spectrum disorder(ASD)is a serious neurodevelopmental disorder,the etiology and mechanism of which are not yet clear.Studies have shown that folate deficiency can lead to abnormalities in the de-velopment of th...Autism spectrum disorder(ASD)is a serious neurodevelopmental disorder,the etiology and mechanism of which are not yet clear.Studies have shown that folate deficiency can lead to abnormalities in the de-velopment of the central nervous system.Patients with autism spectrum disorders develop folate-alpha recep-tor autoantibodies.Folate-alpha receptor autoantibodies block folate transport,leading to a deficiency of folate in nerve tissues.Folate is effective in treating patients with folate-alpha receptor autoantibodies.展开更多
Folate receptor alpha(FOLR1)is vital for cells ingesting folate(FA).FA plays an indispensable role in cell pro-liferation and survival.However,it is not clear whether the axis of FOLR1/FA has a similar function in vir...Folate receptor alpha(FOLR1)is vital for cells ingesting folate(FA).FA plays an indispensable role in cell pro-liferation and survival.However,it is not clear whether the axis of FOLR1/FA has a similar function in viral replication.In this study,we used vesicular stomatitis virus(VSV)to investigate the relationship between FOLR1-mediated FA deficiency and viral replication,as well as the underlying mechanisms.We discovered that FOLR1 upregulation led to the deficiency of FA in HeLa cells and mice.Meanwhile,VSV replication was notably sup-pressed by FOLR1 overexpression,and this antiviral activity was related to FA deficiency.Mechanistically,FA deficiency mainly upregulated apolipoprotein B mRNA editing enzyme catalytic subunit 3B(APOBEC3B)expression,which suppressed VSV replication in vitro and in vivo.In addition,methotrexate(MTX),an FA metabolism inhibitor,effectively inhibited VSV replication by enhancing the expression of APOBEC3B in vitro and in vivo.Overall,our present study provided a new perspective for the role of FA metabolism in viral infections and highlights the potential of MTX as a broad-spectrum antiviral agent against RNA viruses.展开更多
基金Yunnan Provincial Department of Education Scien-tific Research Fund Project(K13225116).
文摘Autism spectrum disorder(ASD)is a serious neurodevelopmental disorder,the etiology and mechanism of which are not yet clear.Studies have shown that folate deficiency can lead to abnormalities in the de-velopment of the central nervous system.Patients with autism spectrum disorders develop folate-alpha recep-tor autoantibodies.Folate-alpha receptor autoantibodies block folate transport,leading to a deficiency of folate in nerve tissues.Folate is effective in treating patients with folate-alpha receptor autoantibodies.
基金National Natural Science Foundation of China(No.31970149,81900823)The Major Research and Development Project(2018ZX10301406)Nanjing University-Ningxia University Collaborative Project(Grant#2017BN04).
文摘Folate receptor alpha(FOLR1)is vital for cells ingesting folate(FA).FA plays an indispensable role in cell pro-liferation and survival.However,it is not clear whether the axis of FOLR1/FA has a similar function in viral replication.In this study,we used vesicular stomatitis virus(VSV)to investigate the relationship between FOLR1-mediated FA deficiency and viral replication,as well as the underlying mechanisms.We discovered that FOLR1 upregulation led to the deficiency of FA in HeLa cells and mice.Meanwhile,VSV replication was notably sup-pressed by FOLR1 overexpression,and this antiviral activity was related to FA deficiency.Mechanistically,FA deficiency mainly upregulated apolipoprotein B mRNA editing enzyme catalytic subunit 3B(APOBEC3B)expression,which suppressed VSV replication in vitro and in vivo.In addition,methotrexate(MTX),an FA metabolism inhibitor,effectively inhibited VSV replication by enhancing the expression of APOBEC3B in vitro and in vivo.Overall,our present study provided a new perspective for the role of FA metabolism in viral infections and highlights the potential of MTX as a broad-spectrum antiviral agent against RNA viruses.