In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have m...Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have measured the force-dependent unfolding rates with different kinds of pulling geometry.However,the equilibrium folding and unfolding dynamics at constant forces has not been reported.Here,using stable magnetic tweezers,we performed equilibrium folding and unfolding dynamic measurement and force-jump measurement of src SH3 domain with tethering points at its N-and C-termini.From the obtained force-dependent transition rates,a detailed two-state free energy landscape of src SH3 protein is constructed with quantitative information of folding free energy,transition state barrier height and position,which exemplifies the capability of magnetic tweezers to study protein folding and unfolding dynamics.展开更多
An understanding of protein folding/unfolding processes has important implications for all biological processes, in- eluding protein degradation, protein translocation, aging, and diseases. All-atom molecular dynamics...An understanding of protein folding/unfolding processes has important implications for all biological processes, in- eluding protein degradation, protein translocation, aging, and diseases. All-atom molecular dynamics (MD) simulations are uniquely suitable for it because of their atomic level resolution and accuracy. However, limited by computational ca- pabilities, nowadays even for small and fast-folding proteins, all-atom MD simulations of protein folding still presents a great challenge. An alternative way is to study unfolding process using MD simulations at high temperature. High temper- ature provides more energy to overcome energetic barriers to unfolding, and information obtained from studying unfolding can shed light on the mechanism of folding. In the present study, a 1000-ns MD simulation at high temperature (500 K) was performed to investigate the unfolding process of a small protein, chicken villin headpiece (HP-35). To infer the folding mechanism, a Markov state model was also built from our simulation, which maps out six macrostates during the folding/unfolding process as well as critical transitions between them, revealing the folding mechanism unambiguously.展开更多
α-catenin is an adhesion protein located at the cadherin-based cell-cell adherens junction.α-catenin cross-linksβ-catenin and actin fiber in the adhesion protein complex,and plays an important role in the formation...α-catenin is an adhesion protein located at the cadherin-based cell-cell adherens junction.α-catenin cross-linksβ-catenin and actin fiber in the adhesion protein complex,and plays an important role in the formation and modulation of cell-cell adhesion.The central modulation domains can be unfolded to expose binding site of vinculin when stretching force is applied.Here,we studied the force-induced unfolding dynamics ofα-catenin modulation domains under different loading rates from which the unfolding distance of M2 and M3 domains is determined to be 5-7 nm,and an unfolding intermediate state is identified.We also found that the folding process of M1-M3 domains goes through different pathways with cooperativity.展开更多
Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Two- hundred independent foldi...Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Two- hundred independent folding simulations (starting from non-native conformations) and two- hundred independent unfolding simulations (starting from the folded native structure) are performed using the united-residue force field and Metropolis Monte Carlo algorithm for betanova (three-stranded antiparallel beta-sheet protein). From these extensive computer simulations, two representative folding pathways and two representative unfolding pathways are obtained in the reaction coordinates such as the fraction of native contacts, the radius of gyration, and the root- mean-square deviation. The folding pathways and the unfolding pathways are similar each other. The largest deviation between the folding pathways and the unfolding pathways results from the root-mean-square deviation near the folded native structure. In general, unfolding computer simulations could capture the essentials of folding simulations.展开更多
The design of any antagonist or inhibitor for any enzyme requires the knowledge of structure- function relationship of the protein and the optimum conformational states for maximum and minimum activities. Furthermore,...The design of any antagonist or inhibitor for any enzyme requires the knowledge of structure- function relationship of the protein and the optimum conformational states for maximum and minimum activities. Furthermore, designing of the inhibitors or drugs against an enzyme becomes easier if there is information available about various well characterized intermediate conformation of the molecule. In vivo folding pathway of any recombinant protein is an important parameter for understanding its ability to fold by itself inside the cell, which always dictates the downstream processing for the purification. In the present manuscript we have discussed about the in vivo and in vitro folding, and structure-function relationship of Dihydrofolate reductase enzyme. This is an important enzyme involved in the cell growth and hence inhibition or inactivation of the enzyme may reduce the cell growth. It was observed that the equilibrium unfolding transition of DHFR proceeds through the formation of intermediates having higher exposed surface hydrophobicity, unchanged enzymatic activity and minimum changes in the secondary structural elements. Because of enhanced surface hydrophobicity, and unchanged enzymatic activity, these intermediates could be a nice target for designing drugs against DHFR.展开更多
Molecular dynamics simulations based on AMBER force fields(ff96 and ff03) and generalized Born models(igb1 and igb5) have been carried out in order to study folding/unfolding of the Trp-cage mini-protein TC5b.The ther...Molecular dynamics simulations based on AMBER force fields(ff96 and ff03) and generalized Born models(igb1 and igb5) have been carried out in order to study folding/unfolding of the Trp-cage mini-protein TC5b.The thermodynamic properties of TC5b were found to be sensitive to the specific version of the solvation model and force field employed.When the ff96/igb5 combination was used,the predicted melting temperature from unfolding simulations was in good agreement with the experimental value of 315 K,but the folding simulation did not converge.The most stable thermodynamic profile in both folding and unfolding simulations was obtained when the ff03/igb5 combination was employed,and the predicted melting temperature was about 345 K,showing over-stabilization of the protein.Simulations using the igb1 version in combination with ff96 or ff03 were difficult to converge within the simulation time limit(50 ns).展开更多
We have performed molecular dynamics simulations on the reversible folding/unfolding of small α-helix(short Ala based peptide Ala5) in explicit water solvent in terms of ABEEMσπ/MM.A dynamics analysis shows that t...We have performed molecular dynamics simulations on the reversible folding/unfolding of small α-helix(short Ala based peptide Ala5) in explicit water solvent in terms of ABEEMσπ/MM.A dynamics analysis shows that the α-helical turn can be preserved up to a period of about 2 ns at 300 K,which supports the conclusions of Margulis et al.The time trajectory of the root mean square deviation between the heavy atoms of the backbone and the helical reference structure indicate that "helix melting and formation occurs rapidly on a time scale of 0.1 ns at 300 K" is not a felicitous conclusion.We first quantificationally concluded that the helix nucleation can maintain 2 ns,1―1.5 ns and 0.8 ns for Ala5 at 300 K,400 K and 500 K,respectively.Furthermore,increasing temperature dose not alter the pathway of folding/unfolding,but change the rate.An analysis of structures in a "transition-state ensemble" shows that helix-to-coil transitions occurs predominantly through breaking of hydrogen bonds at the helix ends(92%),particularly at the C-terminus(50%).Hydrogen bonds' breaking and formation occurs on a time scale of 0.1 ns.展开更多
This paper presents an experimental research aiming to realize an artificial hind wing that can mimic the wing unfolding motion of Allomyrina dichotoma, an insect in coleopteran order. Based on the understanding of wo...This paper presents an experimental research aiming to realize an artificial hind wing that can mimic the wing unfolding motion of Allomyrina dichotoma, an insect in coleopteran order. Based on the understanding of working principles of beetle wing folding/unfolding mechanisms, the hind wing unfolding motion is mimicked by a combination of creative ideas and state-of-art artificial muscle actuator. In this work, we devise two types of artificial wings and the successfully demonstrate that they can be unfolded by actuation of shape memory alloy wires to provide actuation force at the wing base and along the leading edge vein. The folding/unfolding mechanisms may provide an insight for portable nano/micro air vehicles with morphing wings.展开更多
a-Crystallin is the major structural protein of eye lens of vertebrates. In human lens, the ratio of aA-crystallin to aB-crystallin was found to be 3:1. aA-Crystallin contains two cysteine residues at positions 131 an...a-Crystallin is the major structural protein of eye lens of vertebrates. In human lens, the ratio of aA-crystallin to aB-crystallin was found to be 3:1. aA-Crystallin contains two cysteine residues at positions 131 and 142, which are at the junction between the a-crystallin domain and the C-terminal tail. We used the accessibility of the thiol groups by Ellman’s reagent (DTNB) as a tool to gain information about the various structural perturbations of hinge region of a-crystallin and during the binding with substrates. In the native condition, the cys-142 though reacted quite fast was not fully exposed. Several reagents were used to see the accessibility of cys-131. Rate constant for cys-131 was increased gradually with increase in the concentration of reagents. The bindings of substrates are affected by the accessibility of thiol indicating that the substrates bind to the hinge region of a-crystallin. By blocking of cys-142, it was observed that the accessibility of one thiol depends on the other thiol, and they are not independent. The hinge region of a-crystallin is very important as substrate binding site and from this study we have got various structural information about that region.展开更多
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
基金the National Natural Science Foundation of China(Grant Nos.11874309 and 11474237)the 111 Project(Grant No.B16029)。
文摘Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have measured the force-dependent unfolding rates with different kinds of pulling geometry.However,the equilibrium folding and unfolding dynamics at constant forces has not been reported.Here,using stable magnetic tweezers,we performed equilibrium folding and unfolding dynamic measurement and force-jump measurement of src SH3 domain with tethering points at its N-and C-termini.From the obtained force-dependent transition rates,a detailed two-state free energy landscape of src SH3 protein is constructed with quantitative information of folding free energy,transition state barrier height and position,which exemplifies the capability of magnetic tweezers to study protein folding and unfolding dynamics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175068 and 11474117)the Self-determined Research Funds of CCNU from the Colleges Basic Research and Operation of MOE,China(Grant No.230-20205170054)
文摘An understanding of protein folding/unfolding processes has important implications for all biological processes, in- eluding protein degradation, protein translocation, aging, and diseases. All-atom molecular dynamics (MD) simulations are uniquely suitable for it because of their atomic level resolution and accuracy. However, limited by computational ca- pabilities, nowadays even for small and fast-folding proteins, all-atom MD simulations of protein folding still presents a great challenge. An alternative way is to study unfolding process using MD simulations at high temperature. High temper- ature provides more energy to overcome energetic barriers to unfolding, and information obtained from studying unfolding can shed light on the mechanism of folding. In the present study, a 1000-ns MD simulation at high temperature (500 K) was performed to investigate the unfolding process of a small protein, chicken villin headpiece (HP-35). To infer the folding mechanism, a Markov state model was also built from our simulation, which maps out six macrostates during the folding/unfolding process as well as critical transitions between them, revealing the folding mechanism unambiguously.
基金the National Nature Science Foundation of China(Grant Nos.11474237 and 11574310)the 111 Project(Grant No.B16029).
文摘α-catenin is an adhesion protein located at the cadherin-based cell-cell adherens junction.α-catenin cross-linksβ-catenin and actin fiber in the adhesion protein complex,and plays an important role in the formation and modulation of cell-cell adhesion.The central modulation domains can be unfolded to expose binding site of vinculin when stretching force is applied.Here,we studied the force-induced unfolding dynamics ofα-catenin modulation domains under different loading rates from which the unfolding distance of M2 and M3 domains is determined to be 5-7 nm,and an unfolding intermediate state is identified.We also found that the folding process of M1-M3 domains goes through different pathways with cooperativity.
文摘Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Two- hundred independent folding simulations (starting from non-native conformations) and two- hundred independent unfolding simulations (starting from the folded native structure) are performed using the united-residue force field and Metropolis Monte Carlo algorithm for betanova (three-stranded antiparallel beta-sheet protein). From these extensive computer simulations, two representative folding pathways and two representative unfolding pathways are obtained in the reaction coordinates such as the fraction of native contacts, the radius of gyration, and the root- mean-square deviation. The folding pathways and the unfolding pathways are similar each other. The largest deviation between the folding pathways and the unfolding pathways results from the root-mean-square deviation near the folded native structure. In general, unfolding computer simulations could capture the essentials of folding simulations.
文摘The design of any antagonist or inhibitor for any enzyme requires the knowledge of structure- function relationship of the protein and the optimum conformational states for maximum and minimum activities. Furthermore, designing of the inhibitors or drugs against an enzyme becomes easier if there is information available about various well characterized intermediate conformation of the molecule. In vivo folding pathway of any recombinant protein is an important parameter for understanding its ability to fold by itself inside the cell, which always dictates the downstream processing for the purification. In the present manuscript we have discussed about the in vivo and in vitro folding, and structure-function relationship of Dihydrofolate reductase enzyme. This is an important enzyme involved in the cell growth and hence inhibition or inactivation of the enzyme may reduce the cell growth. It was observed that the equilibrium unfolding transition of DHFR proceeds through the formation of intermediates having higher exposed surface hydrophobicity, unchanged enzymatic activity and minimum changes in the secondary structural elements. Because of enhanced surface hydrophobicity, and unchanged enzymatic activity, these intermediates could be a nice target for designing drugs against DHFR.
基金supported by the National Basic Research Program of China (Grant No. 2004CB719901)the National Natural Science Foundation of China (Grants No.10874104,20773060)the Natural Science Foundation of Shandong Province (Grant No.Z2007A05)
文摘Molecular dynamics simulations based on AMBER force fields(ff96 and ff03) and generalized Born models(igb1 and igb5) have been carried out in order to study folding/unfolding of the Trp-cage mini-protein TC5b.The thermodynamic properties of TC5b were found to be sensitive to the specific version of the solvation model and force field employed.When the ff96/igb5 combination was used,the predicted melting temperature from unfolding simulations was in good agreement with the experimental value of 315 K,but the folding simulation did not converge.The most stable thermodynamic profile in both folding and unfolding simulations was obtained when the ff03/igb5 combination was employed,and the predicted melting temperature was about 345 K,showing over-stabilization of the protein.Simulations using the igb1 version in combination with ff96 or ff03 were difficult to converge within the simulation time limit(50 ns).
文摘We have performed molecular dynamics simulations on the reversible folding/unfolding of small α-helix(short Ala based peptide Ala5) in explicit water solvent in terms of ABEEMσπ/MM.A dynamics analysis shows that the α-helical turn can be preserved up to a period of about 2 ns at 300 K,which supports the conclusions of Margulis et al.The time trajectory of the root mean square deviation between the heavy atoms of the backbone and the helical reference structure indicate that "helix melting and formation occurs rapidly on a time scale of 0.1 ns at 300 K" is not a felicitous conclusion.We first quantificationally concluded that the helix nucleation can maintain 2 ns,1―1.5 ns and 0.8 ns for Ala5 at 300 K,400 K and 500 K,respectively.Furthermore,increasing temperature dose not alter the pathway of folding/unfolding,but change the rate.An analysis of structures in a "transition-state ensemble" shows that helix-to-coil transitions occurs predominantly through breaking of hydrogen bonds at the helix ends(92%),particularly at the C-terminus(50%).Hydrogen bonds' breaking and formation occurs on a time scale of 0.1 ns.
基金Supported by the Korea Science and Engineering Foundation Grant (R0A-2007-000-200012-0)Korea Research Foundation (KRF-2006-005-J03301)
文摘This paper presents an experimental research aiming to realize an artificial hind wing that can mimic the wing unfolding motion of Allomyrina dichotoma, an insect in coleopteran order. Based on the understanding of working principles of beetle wing folding/unfolding mechanisms, the hind wing unfolding motion is mimicked by a combination of creative ideas and state-of-art artificial muscle actuator. In this work, we devise two types of artificial wings and the successfully demonstrate that they can be unfolded by actuation of shape memory alloy wires to provide actuation force at the wing base and along the leading edge vein. The folding/unfolding mechanisms may provide an insight for portable nano/micro air vehicles with morphing wings.
文摘a-Crystallin is the major structural protein of eye lens of vertebrates. In human lens, the ratio of aA-crystallin to aB-crystallin was found to be 3:1. aA-Crystallin contains two cysteine residues at positions 131 and 142, which are at the junction between the a-crystallin domain and the C-terminal tail. We used the accessibility of the thiol groups by Ellman’s reagent (DTNB) as a tool to gain information about the various structural perturbations of hinge region of a-crystallin and during the binding with substrates. In the native condition, the cys-142 though reacted quite fast was not fully exposed. Several reagents were used to see the accessibility of cys-131. Rate constant for cys-131 was increased gradually with increase in the concentration of reagents. The bindings of substrates are affected by the accessibility of thiol indicating that the substrates bind to the hinge region of a-crystallin. By blocking of cys-142, it was observed that the accessibility of one thiol depends on the other thiol, and they are not independent. The hinge region of a-crystallin is very important as substrate binding site and from this study we have got various structural information about that region.