期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Concentrations of foliar and surface soil in nutrients Pinus spp. plantations in relation to species and stand age in Zhanggutai sandy land, northeast China 被引量:5
1
作者 陈广生 曾德慧 陈伏生 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期11-18,J001,共9页
The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, ... The concentrations of the foliar and surface soil nutrients and the variation with species and stand age were studied inPinus spp. plantations in Zhanggutai area, northeast China. The results showed that the total N, total P and C: N ratio of the soil inP. sylvestris var.mongolica stands were significantly higher in comparison with those inP. tabulaeformis andP. densiflora stands. ForP. sylvestris var.mongolica, the foliar P concentration appeared to decrease with age, and the foliar N and K concentrations did not show a consistent change with age. As for the different tree species of the similar age, the foliar N and P concentrations were significantly different (p<0.05), being withP. sylvestris var.mongolica>P. densiflora>P. tabulaeformis. The foliar N: P ratio ofP. densiflora significantly was higher thanP. sylvestris var.mongolica andP. tabulaeformis, while the foliar K was no obvious difference between the three tree species. There were significant correlation (p<0.05) between soil total N and P, soil organic matter and total P, foliar N and P, but it did not show significant correlations between soil and foliar nutrient concentrations, which might attribute to the excessive litter raking, overgrazing and low soil moisture in this area. Based on the foliar N: P ratio, we introduced a combination threshold index of N: P ratio with their absolute foliar nutrient concentrations to determine the possible limiting nutrient. According to the critical N: P ratio and their absolute foliar N, P concentrations, theP. sylvestris var.mongolica stands showed a decreased N limitation degree with age, theP. densiflora stands showed unlimited by N and P in the whole, and theP. tabulaeformis stands showed co-limited by N and P. No significant difference in soil nutrient concentrations of the surface soils was found between 45, 29, 20-yr-oldPinus sylvestris var.mongolica plantation stands. Keywords coniferous trees - foliar nutrient concentration - limiting nutrients - N - P ratio - Zhanggutai sandy land CLC number S718.55 Document code A Article ID 1007-662X(2004)01-0011-08 Foundation item: This research was supported by Key Knowledge Innovation Project (KZCX3-SW-418) of Chinese Academy of Sciences.Biography: CHEN Guang-sheng (1978-), male, master candidate in Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. ChinaResponsible editor: Song Funan 展开更多
关键词 coniferous trees foliar nutrient concentration limiting nutrients N P ratio Zhanggutai sandy land
下载PDF
Decreasing nutrient concentrations in soils and trees with increasing elevation across a treelineecotone in Rolwaling Himal, Nepal 被引量:4
2
作者 Simon DROLLINGER Michael MULLER +4 位作者 Timo KOBL Niels SCHWAB Jurgen BOHNER Udo SCHICKHOFF Thomas SCHOLTEN 《Journal of Mountain Science》 SCIE CSCD 2017年第5期843-858,共16页
At a global scale, tree growth in alpine treeline ecotones is limited by low temperatures. At a local scale, however, tree growth at its upper limit depends on multiple interactions of influencing factors and mechanis... At a global scale, tree growth in alpine treeline ecotones is limited by low temperatures. At a local scale, however, tree growth at its upper limit depends on multiple interactions of influencing factors and mechanisms. The aim of our research was to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors in a near-natural Himalayan treeline ecotone. Soil samples of different soil horizons, litter, decomposition layers, and foliage samples of standing biomass were collected in four altitudinal zones along three slopes, and were analysed for exchangeable cations and nutrient concentrations, respectively. Additionally, soil and air temperature, soil moisture, precipitation, and tree physiognomy patterns were evaluated. Both soil nutrients and foliar macronutrient concentrations of nitrogen(N), magnesium(Mg), potassium(K), and foliar phosphorus(P) decrease significantly with elevation. Foliar manganese(Mn) concentrations, bycontrast, are extraordinarily high at high elevation sites. Potential constraining factors on tree growth were identified using multivariate statistical approaches. We propose that tree growth, treeline position and vegetation composition are affected by nutrient limitation, which in turn, is governed by low soil temperatures and influenced by soil moisture conditions. 展开更多
关键词 foliar nutrients HIMALAYA Nitrogen Nutrient cycling PODZOL TREELINE
下载PDF
N and P resorption in a pioneer shrub(Artemisia halodendron) inhabiting severely desertified lands of Northern China 被引量:11
3
作者 YuLin LI Chen JING +3 位作者 Wei MAO Duo CUI XinYuan WANG XueYong ZHAO 《Journal of Arid Land》 SCIE CSCD 2014年第2期174-185,共12页
Nutrient resorption is an important conservation mechanism for plants to overcome nutrient limitation in the less fertile area of desertifled land. In the semi-arid Horqin Sandy Land of Northern China, the shrub Artem... Nutrient resorption is an important conservation mechanism for plants to overcome nutrient limitation in the less fertile area of desertifled land. In the semi-arid Horqin Sandy Land of Northern China, the shrub Artemisia ha/odendron usually colonizes into the bare ground of severely desertified land as a pioneer species. It is, therefore, expected that A. ha/odendron will be less dependent on current nutrient uptake through efficient and proficient re- sorption of nutrients. In this study, we found that averaged nitrogen (N) and phosphorus (P) concentrations in se- nesced leaves significantly varied from 12.3 and 1.2 mg/g in the shifting sand dune to 15.9 and 1.9 mg/g in the fixed sand dune, respectively, suggesting that foliar N and P resorption of A. ha/odendron were more proficient in the shifting sand dune. In particular, positive relationships between nutrient concentrations in senesced leaves and soil nutrient availability indicate that A. ha/odendron in infertile habitats is more likely to manage with a low level of nu- trients in senesced leaves, giving this species an advantage in infertile soil. Moreover, foliar N- and P-resorption efficiencies and proficiencies showed limited inter-annual variability although annual precipitation varied greatly among 2007-2009. However, N and P resorption of A. ha/oc/endron were not more efficient and proficient than those previously reported for other shrubs, indicating that the pioneer shrub in sand dune environments does not rely more heavily than other plants on the process of resorption to conserve nutrients. Incomplete resorption of nutrients in A. halodendron suggests that senesced-leaf fall would return litter with high quality to the soil, and thereby would indirectly improve soil nutrient availability. The restoration of desertified land, therefore, may be ac- celerated after A. halodendron pioneers into shifting sand dunes. 展开更多
关键词 foliar nutrient concentration nutrient-resorption efficiency nutrient-resorption proficiency senesced vs. green leaves DESERTIFICATION soil nutrient availability
下载PDF
Eucalyptus grandis plantations:effects of management on soil carbon,nutrient contents and yields 被引量:5
4
作者 Diego Martin Sandoval Lopez Marcelo Fabian Arturi +2 位作者 Juan Francisco Goya Carolina Alejandra Perez Jorge Luis Frangi 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第2期601-611,共11页
The expansion of fast-growing tree plantations is a worldwide process,with consequences on soil fertility and soil carbon storage.Disparate results were found on the effects of afforestation with Eucalyptus on soil ca... The expansion of fast-growing tree plantations is a worldwide process,with consequences on soil fertility and soil carbon storage.Disparate results were found on the effects of afforestation with Eucalyptus on soil carbon and other nutrient contents.These discrepancies are usually caused by differences in climate,land use history,soil texture as well as by management related factors such as plantation age,number of rotations,method of establishment(plantation or coppice),harvest residue management and soil preparation.We studied the effect of plantation age,number of rotations,and method of establishment on soils and plant nutrient concentrations in Eucalyptus grandis plantations in NE Argentina on different textured soils.We also determined if yields changed with nutrient variations in soils,and compared soils under plantations to soils under grasslands they replaced.Thirty-one E.grandis stands of different ages,number of rotations and method of establishment were evaluated as well as eight grassland sites.Levels of carbon,nitrogen,phosphorus,potassium,calcium and magnesium were determined for soils and plants.Soil carbon and nitrogen decreased over the number of rotations and were more pronounced in soils with 50-60%sand than soils with>75%sand.Coppice stands showed higher soil carbon and nitrogen levels than plantations,suggesting a negative effect of site preparation before planting on soil nutrient conservation,especially in fine-textured soils.Foliar nutrient concentrations did not follow the trends observed for soil nutrients nor did they reflect nutrient limitations.There was no evidence of decreased yields over successive rotations.Soil carbon and nitrogen contents decrease when grasslands are replaced by E.grandis plantations,and therefore a yield limitation may occur in a medium to long-term frame,especially in stands re-established for short-rotation management.Harvest residue management and site preparation must be specifically designed for improving soil nutrient management. 展开更多
关键词 Soil texture Grasslands foliar nutrient concentrations Successive harvest COPPICE Eucalyptus grandis
下载PDF
Variability and limits of nitrogen and phosphorus resorption during foliar senescence 被引量:1
5
作者 Marc Estiarte Matteo Campioli +1 位作者 Maria Mayol Josep Penuelas 《Plant Communications》 SCIE CSCD 2023年第2期41-55,共15页
Foliar nutrient resorption(NuR)plays a key role in ecosystem functioning and plant nutrient economy.Most of this recycling occurs during the senescence of leaves and is actively addressed by cells.Here,we discuss the ... Foliar nutrient resorption(NuR)plays a key role in ecosystem functioning and plant nutrient economy.Most of this recycling occurs during the senescence of leaves and is actively addressed by cells.Here,we discuss the importance of cell biochemistry,physiology,and subcellular anatomy to condition the outcome of NuR at the cellular level and to explain the existence of limits to NuR.Nutrients are transferred from the leaf in simple metabolites that can be loaded into the phloem.Proteolysis is the main mechanism for mobilization of N,whereas P mobilization requires the involvement of different catabolic pathways,making the dynamics of P in leaves more variable than those of N before,during,and after foliar senescence.The biochemistry and fate of organelles during senescence impose constraints that limit NuR.The efficiency of NuR decreases,especially in evergreen species,as soil fertility increases,which is attributed to the relative costs of nutrient acquisition from soil decreasing with increasing soil nutrient availability,while the energetic costs of NuR from senescing leaves remain constant.NuR is genetically determined,with substantial interspecific variability,and is environmentally regulated in space and time,with nutrient availability being a key driver of intraspecific variability in NuR. 展开更多
关键词 foliar nutrient resorption SENESCENCE NITROGEN PHOSPHORUS efficiency nutrient availability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部