期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Effects of Mixture Sowing on Forage Yield and Interspecific Competition of Alfalfa and Orchard Grass 被引量:2
1
作者 ZUO Yan-chun DU Zhou-he ZHU Yong-qun ZHOU Xiao-kang 《Animal Husbandry and Feed Science》 CAS 2010年第10期39-41,共3页
[ Objective] To explore the mixture sowing effects and optimal mixture ratio of alfalfa and orchard grass. [ Method] The alfalfa and orchard grass were sowed at different ratios (1 : 0, 3: 1, 1 : 1, 1 : 3 and 0... [ Objective] To explore the mixture sowing effects and optimal mixture ratio of alfalfa and orchard grass. [ Method] The alfalfa and orchard grass were sowed at different ratios (1 : 0, 3: 1, 1 : 1, 1 : 3 and 0:1 ). They were grouped and named as CK1, A1, A2, A3 and CK2., respectively. The forage yield, relative yield total (RYT) and the competition rate (CR) of alfalfa and orchard grass in each group were determined, respectively. [ Result] In the A3 treatment group, the total forage yield was the highest (4 827.67 kg/hm2) and significantly different from that of other treatment groups ( P 〈 0.01 ). In every treatment group, the RYT was higher than 1, and the alfalfa was more competitive than the orchard grass in the mixed-seeding pasture. [ Conclusion] Our studies may provide a basis for the establishment of high yield and high quality artificial mixture pasture. 展开更多
关键词 ALFALFA Orchard grass Mixture sowing forage yield Interspecific competition
下载PDF
Genomic prediction of seasonal forage yield in perennial ryegrass
2
作者 Agnieszka Konkolewska Steffie Phang +3 位作者 Patrick Conaghan Dan Milbourne Aonghus Lawlor Stephen Byrne 《Grassland Research》 2023年第3期167-181,共15页
Background:Genomic selection has the potential to accelerate genetic gain in perennial ryegrass breeding,provided complex traits such as forage yield can be predicted with sufficient accuracy.Methods:In this study,we ... Background:Genomic selection has the potential to accelerate genetic gain in perennial ryegrass breeding,provided complex traits such as forage yield can be predicted with sufficient accuracy.Methods:In this study,we compared modelling approaches and feature selection strategies to evaluate the accuracy of genomic prediction models for seasonal forage yield production.Results:Overall,model selection had limited impact on predictive ability when using the full data set.For a baseline genomic best linear unbiased prediction model,the highest mean predictive accuracy was obtained for spring grazing(0.78),summer grazing(0.62)and second cut silage(0.56).In terms of feature selection strategies,using uncorrelated single-nucleotide polymorphisms(SNPs)had no impact on predictive ability,allowing for a potential decrease of the data set dimensions.With a genome-wide association study,we found a significant SNP marker for spring grazing,located in the genic region annotated as coding for an enzyme responsible for fucosylation of xyloglucans—major components of the plant cell wall.We also presented an approach to increase interpretability of genomic prediction models with the use of Gene Ontology enrichment analysis.Conclusions:Approaches for feature selection will be relevant in development of low-cost genotyping platforms in support of routine and cost-effective implementation of genomic selection. 展开更多
关键词 forage yield genomic selection perennial ryegrass breeding
原文传递
Effects of Meteorological Factors on Overwintering Ability,Yield and Quality of Forage Rape
3
作者 Yao ZHANG Junzhu GE +5 位作者 Guangsheng ZHOU Xidong WU Yong an YANG Haipeng HOU Qian LIANG Zhiqi MA 《Agricultural Biotechnology》 CAS 2021年第3期15-21,25,共8页
In order to investigate the effects of meteorological factors on rape overwintering ability,forage yield and quality of rape in the North China plain,Brassia campestris L.and Brassica napus L.were used in this study.T... In order to investigate the effects of meteorological factors on rape overwintering ability,forage yield and quality of rape in the North China plain,Brassia campestris L.and Brassica napus L.were used in this study.The results showed that compared with the B.napus L.varieties,the growth period of B.campestris L.was shortened by 10-15 d,the overwintering rate(WR)increased by 50.6%,and the density after winter(PD)increased by 41.5%.The fresh forage yield(FFY)and dry forage yield(DFY)of the B.campestris L.type significantly increased by 40.9%and 38.1%compared with the B.napus L.type.,respectively,while the forage quality of the B.napus L.type rape was significantly better than that of the B.campestris L.type.Compared with the B.campestris L.type,the crude protein(CP),fat,ash and total fatty acid(TFA)contents of the B.napus L.type of rape increased by 27.6%,42.9%,23.9%and 52.3%,respectively,and the milk productivity(HM),relative forage value(RFV)and relative forage quality(RFQ)increased by 14.0%,16.2%and 42.1%,respectively.The light and heat resources before wintering increased the WR and PD(P<0.05),and were positively correlated with FFY and DFY(P>0.05),and lower temperature during the wintering period led to lower WR(P<0.01).The light and heat resources during the overwintering period and after regreening were negatively correlated with FFY and DFY(P>0.05).The contents of CP,fat and TFA of rape had an extremely significant negative correlation with the temperature and sunshine hours before wintering,but an extremely significant positive correlation with the temperature during the wintering period and after regreening,as well as the sunshine hours and rainfall during the wintering period;and HM had an extremely significant positive correlation with the temperature,sunshine hours and rainfall during the wintering period,while RFV and RFQ were only extremely significantly positively correlated with the maximum temperature and rainfall.In summary,in the North China Plain,for autumn sowing rape,the B.campestris L.type can be selected to improve the wintering rate,and the B.napus L.type should be the main choice to improve the forage quality of rape.Therefore,the B.napus L.variety HYZ62 can be selected for autumn sowing in the North China Plain. 展开更多
关键词 forage rape Meteorological factors Wintering ability forage yield forage quality
下载PDF
Trends of seasonal forage yield changes of triticale in the southern Great Plains of the United States
4
作者 Tadele T.Kumssa Joshua D.Anderson +6 位作者 James P.Johnson Shawn Norton Malay C.Saha Michael A.Trammell James K.Rogers Twain J.Butler Xue-Feng Ma 《Grassland Research》 2022年第3期166-173,共8页
Background:The focus of triticale breeding in the southern Great Plains of the United States has been to increase forage yield for autumn-winter seasons when most other forage species are dormant.This study aims to es... Background:The focus of triticale breeding in the southern Great Plains of the United States has been to increase forage yield for autumn-winter seasons when most other forage species are dormant.This study aims to estimate the trends of seasonal yield changes over time.Methods:Yield trials had been conducted in a randomized complete block design for up to two decades.Seasonal yield changes over time were estimated using linear regression analysis.Results:The analysis revealed a significant positive relation between autumn forage yield(relative to common checks)and calendar years when the trials were conducted.The estimated improvement of autumn forage yield was about 1.9%per year on medium and heavy soil at Ardmore,Oklahoma,and about 5.4%per year on light soil at Burneyville,Oklahoma.However,winter forage yield change was minimal and the spring forage yield increase was negative,although this decline was not significant.Total forage yield improvements were about 0.6%and 0.7%per year at Ardmore and Burneyville,respectively.Similar results were also observed when years of cultivars'introduction were used instead.Conclusions:The results indicate a significant gain in autumn forage yield,but a minor gain in the total forage yield due to the yield tradeoff between the autumn and spring seasons. 展开更多
关键词 cultivar improvement forage yield grazing tolerance regrowth TRITICALE
原文传递
Effect of Salinity Stress on Growth and Yield of Forage Genotypes
5
作者 Pijush Kanti Ghosh Md. Shafiqul Islam Sarder Safiqul Islam 《Agricultural Sciences》 2021年第9期949-959,共11页
Salinity is the major limiting factor for forage productivity in southwestern coastal region of Bangladesh. Some introduced forage cultivars have been shown promising adaptability in saline conditions. The objective o... Salinity is the major limiting factor for forage productivity in southwestern coastal region of Bangladesh. Some introduced forage cultivars have been shown promising adaptability in saline conditions. The objective of this study was to assess the productivity and measure the agronomic characteristics of several introduced grass species with different created soil salinity levels. This study was conducted at the net house of Dr. Purnendu Gain Field Laboratory, Agrotechnology Discipline, and Khulna University during the period from December 2017 to February 2018. The experiment was laid out in a factorial randomized complete block design with seven replications. The experiment consisted of two factor viz. soil salinity levels (S<sub>1</sub> = 0.48, S<sub>2</sub> = 5.8, S<sub>3</sub> = 7.9, S<sub>4</sub> = 9.4, S<sub>5</sub> = 15 d<span style="white-space:nowrap;">&#183;</span>Sm<sup><span style="white-space:nowrap;">&#8722;</span>1</sup>) and thirteen forage genotypes. Salinity levels and forage genotypes significantly (p < 0.05) influence all the growth parameters and biomass yield. The growth parameters and yield gradually decreased with the advance of soil salinity level. The tallest plant height (109.85 cm) was found in S<sub>1</sub> at 90 DAS while the shortest plant (24.53 cm) was obtained in S<sub>5</sub> at 90 DAS. Soil salinity had a significant difference (p < 0.001) on plant height at 90 DAS. The highest numbers of tillers (3.36) were found in S<sub>1</sub>, whereas the lowest (0.48) was in S<sub>5</sub> at 75 DAS. Soil salinity had a significant difference (p < 0.001) on Number of tillers at 75 DAS. The highest biomass wt. (29.14 g) was found in S<sub>1</sub>, while the lowest biomass wt. (3.52 g) was obtained in S<sub>5</sub> at 60 DAS. Soil salinity had a significant difference (p < 0.001) on biomass wt. at 60 DAS. The highest dry matter% (DM%) (21.24%) was found in S<sub>4</sub>, while the lowest DM (18.74%) was obtained in S<sub>1</sub> at 60 DAS. Soil salinity had a significant difference (p < 0.001) on dry matter% (DM%) wt. at 90 DAS. The tallest plant height (81.93 cm) was found in Pakchong, while the shortest plant (20.13 cm) was obtained in Endropogan at 60DAS. Soil salinity had a significant difference (p < 0.001) on plant height at 60 DAS. The highest numbers of tillers (3.07) were also found in Napier-3, whereas the lowest (0.80) was in H. Jaumbo at 75 DAS (S<sub>1</sub> + S<sub>2</sub> + S<sub>3</sub> + S<sub>4</sub> + S<sub>5</sub>). Soil salinity had a significant difference (p < 0.001) on Number of tillers at 75 DAS. The highest biomass wt. (38.60 g) was found in Pakchong, while the lowest biomass wt. (4.49 g) was obtained in Oats at 60 DAS. Soil salinity had a significant difference (p < 0.001) on biomass wt. at 60 DAS (S<sub>1</sub> + S<sub>2</sub> + S<sub>3</sub> + S<sub>4</sub> + S<sub>5</sub>). The highest (DM%) was found in Endropogan (24.68%), while the lowest DM (18.37%) was obtained Spelindida. Soil salinity had a significant difference (p < 0.001) on DM at 90 DAS. It can be concluded that Pakchong appears to be highly salt tolerant. 展开更多
关键词 EFFECT Salinity Stress GROWTH yield of forage Genotypes
下载PDF
Studies on Biomass Yield, Morphological Characteristics and Nutritive Quality of Napier Cultivars under Two Different Geo-Topographic Conditions of Bangladesh 被引量:1
6
作者 Nathu Ram Sarker Mohammed Ahsan Habib +2 位作者 Dilruba Yeasmin Farah Tabassum Rurul Amin Mohammed 《American Journal of Plant Sciences》 2021年第6期914-925,共12页
The aim of the present study was to evaluate the performance of Napier cultivars in terms of forage yield, plant morphology and nutrient contents under two different agro-ecology and geo-topographic conditions. Three ... The aim of the present study was to evaluate the performance of Napier cultivars in terms of forage yield, plant morphology and nutrient contents under two different agro-ecology and geo-topographic conditions. Three Napier cultivars being conserved by Bangladesh Livestock Research Institute (BLRI), namely-BLRI</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Napier 1, (BN-1), BLRI</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">Napier 3 (BN-3) and Merkeron (BN-5) were selected to cultivate in severe drought prone areas (called Barind) and non-drought area at Savar (Modhupur terrace). Stem cuttings were planted in rows apart from 70 cm and 35cm spacing between plants. Data of 6 consecutive harvests from a period of approximately one year were collected and analyzed statistically by “R” software. The results showed that cultivar and location had </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">significant (P < 0.001) effect on biomass yield, plant height and leaf-stem ratio (LSR), while number of tillers </span><span style="font-family:Verdana;">were </span><span style="font-family:Verdana;">significantly varied with locations. BN-3 yielded the highest biomass (33.32 t/ha/harvest) at non-drought location (42.98 t/ha/harvest). The highest plant height was obtained in BN-1 (171.2 cm) at non-drought location (174.6 cm). Number of tiller</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> per hill ranged from 25.4 to 26.3 among cultivars (P > 0.05) and the highest tillers were found at non-drought location (28.1 no). The best LSR was estimated from BN-5 (0.86) at drought location (0.95). The proximate analysis showed that CP, ADF and NDF in whole plant </span><span style="font-family:Verdana;">were </span><span style="font-family:Verdana;">varied significantly (P < 0.001), being the highest contents in BN-1 (10.69%, 46.20% and 54.58%, respectively). On the other hand, DM and ash contents did not differ significantly (P > 0.05) among cultivars which ranged from 15.80% to 17.13% and 13.10% to 14.58%, respectively. The highest CP content in whole plant was obtained at non-drought location (11.89%), while the lowest ash (10.57%) and NDF (52.71%) contents were obtained at the same location. The highest CP contents in leaf were found at non-drought (15.03%) and the lowest ash (9.86%) at the same location. The highest CP contents (5.90%) in stem were found at non-drought location, while the lowest ash (11.28%) and NDF (54.59%) contents </span><span style="font-family:Verdana;">were obtained </span><span style="font-family:Verdana;">at the same location. Finally, the experiment reveals the superiority in biomass yield and nutritional quality (in</span><span style="font-family:""> </span><span style="font-family:Verdana;">terms of CP content) with the ranking orders of BN-3 > BN-1 > BN-5 and BN-1 > BN-3 > BN-5. Therefore, it may be concluded that BN-1, BN-3</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and BN-5 cultivars were well adapted in both drought and non-drought conditions, although performance showed better in later condition</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">. However, in terms of forage yield and overall nutrient composition, the performance of BN-3 was the best irrespective of locations. 展开更多
关键词 Napier Cultivars Barind forage yield Plant Morphology Nutrient Contents
下载PDF
The Yield and Water Use Efficiency to First Cutting Date of Siberian Wildrye in North China
7
作者 LI Zi-zhong ZHANG Wei-hua GONG Yuan-shi 《Agricultural Sciences in China》 CAS CSCD 2011年第11期1716-1722,共7页
A field experiment study was conducted in Bashang Plateau in North China in 2008 to determine the effect of three first cutting dates on the growth and water use efficiency (WUE) of Siberian wildrye (Elymus sibiric... A field experiment study was conducted in Bashang Plateau in North China in 2008 to determine the effect of three first cutting dates on the growth and water use efficiency (WUE) of Siberian wildrye (Elymus sibiricus L.) in the agropastoral ecotone of North China (APENC). The experiment was conducted in a split plot design with three replications with water supply regime as the main plot treatment and first cutting date as the subplot treatment. Two water supply regimes were used, which included rain-fed treatment as control (CK) and a single irrigation and straw mulch treatment (W). Three first cutting date treatments were conducted at early heading stage on July 1 (E), at late heading stage on July 12 (L), and at flowering stage on July 27 (F), respectively. The results showed that the forage yield and WUE were the lowest at early heading stage harvest, while the highest at flowering stage either in CK or W treatment. Under combined CK and W treatments, average forage yields of the F subplots were 2 900 and 6 703 kg ha-~, and the values of WUE were 0.82 and 2.28 kg m-3, respectively. Under the CK treatment, forage yields of the E and L subplots were 43.8 and 41.9% lower than the F subplots, and their values of WUE were 46.2 and 50.3% lower than F, respectively. Under the W treatment, the forage yields of the E and L subplots were 74.9 and 61.6% lower, and their values of WUE were 78.1 and 63.3% lower, respectively, as compared with F subplots. Therefore, earlier first cutting did not increase the regrowth of Siberian wildrye and improve the mismatch between rainy season and the period of high growth potential of the grass in the semiarid APENC. 展开更多
关键词 siberian wildrye first cutting date forage yield water use efficiency North China
下载PDF
Validation of a Technique for Estimating Alfalfa (Medicago sativa) Biomass from Canopy Volume
8
作者 Christopher G. Misar Lan Xu +3 位作者 Arvid Boe Roger N. Gates Patricia S. Johnson Andrew E. Olson 《American Journal of Plant Sciences》 2016年第1期238-245,共8页
Determining biomass production of individual alfalfa (Medicago sativa L.) plants in space planted evaluation studies is generally not feasible. Clipping plants is time consuming, expensive, and often not possible if t... Determining biomass production of individual alfalfa (Medicago sativa L.) plants in space planted evaluation studies is generally not feasible. Clipping plants is time consuming, expensive, and often not possible if the plants are subjected to grazing. A regression function (B&#8242 = 0.72558 + 0.11638 × V&#8242) was developed from spaced plants growing on rangeland in northwestern South Dakota near Buffalo to nondestructively estimate individual plant biomass (B) from canopy volume (V). However, external validation is necessary to effectively apply the model to other environments. In the summer of 2015, new data to validate the model were collected from spaced plants near Brookings, South Dakota. Canopy volume and clipped plant biomass were obtained from ten alfalfa populations varying in genetic background, growth habit, and growth stage. Fitted models for the model-building and validation data sets had similar estimated regression coefficients and attributes. Mean squared prediction errors (MSPR) were similar to or smaller than error mean square (MSE) of the model-building regression model, indicating reasonable predictive ability. Validation results indicated that the model reliably estimated biomass of plants in another environment. However, the technique should not be utilized where individual plants are not easily distinguished, such as alfalfa monocultures. Estimating biomass from canopy volume values that are extrapolations (>2.077 × 10<sup>6</sup> cm<sup>3</sup>) of the model-building data set is not recommended. 展开更多
关键词 forage Production forage yield LUCERNE PHYTOMASS Predictive Ability
下载PDF
Mowing weakens the positive effects of nitrogen deposition on fundamental ecosystem service of grassland 被引量:1
9
作者 Cong Ding Guo-Jiao Yang +5 位作者 Xiao-Guang Wang Zi-Jia Zhang Yan-Yu Hu Zhi-Wei Zhang Shuang-Li Hou Xiao-Tao Lü 《Ecological Processes》 SCIE EI 2021年第1期58-68,共11页
Forage yield is the fundamental ecosystem service of grasslands.While the quantitative responses of forage yield to nitrogen(N)enrichment are well known,its qualitative responses remain unclear.Even less known is the ... Forage yield is the fundamental ecosystem service of grasslands.While the quantitative responses of forage yield to nitrogen(N)enrichment are well known,its qualitative responses remain unclear.Even less known is the relative contribution of changes in community composition to the quality of the yield at the community level.We examined the quantitative and qualitative responses of forage yield at both plant functional group and community levels with factorial treatments of N addition and mowing in a temperate steppe.Nitrogen addition significantly enhanced the community-level yield by favoring the growth of rhizomatous grass.Mowing tended to mediate the impacts of N addition on the yield.Nitrogen addition increased the concentrations of crude protein and crude fat in forage at the community level.Neither the main effects of mowing nor its interactive effects with N addition affected forage quality.The N-induced shifts in plant species composition significantly contributed to the effects of N addition on forage quality at the community level.Our results suggest that mowing wound weaken the positive effects of N deposition on the quantity but not the quality of forage yield.Changes in plant community composition are important in driving the qualitative responses of yield to N deposition. 展开更多
关键词 Nitrogen enrichment Primary productivity forage quality forage yield Semi-arid grassland
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部