According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear f...Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.展开更多
Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF...Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF isolation are time-consuming and expensive.Thus,in this study,we explored a new method of SVF extrac-tion-ultrasound-assisted SVF isolation(USASI)-and compared the viability and characteristics of SVF isolated using different methods.Methods:SVF extraction methods using different combinations of ultrasound power,ultrasound time,collagenase dosage,and collagenase digestion time were compared with those of the control group(collagenase digestion method).The cell yield and vitality of the SVF were evaluated via cell counting and trypan blue staining.The cell components and immunophenotypes of freshly isolated SVF were analyzed using flow cytometry.The prolifer-ative capacity and differentiation potential of the SVF were also identified.Results:Ultrasonication at 95 W-20 kHz for 30 s followed by digestion with 0.15%collagenase for 30 min was identified as the most suitable parameter for the USASI method in isolating SVF,as recommended based on the evaluation of various tested conditions.The USASI method significantly reduced the collagenase dosage and shortened the digestion time.Compared to the collagenase digestion method,the USASI method had a higher cell yield and cell viability,with no adverse effects on cell components,proliferative capacity,or multipotential differentiation capacity.Conclusion:With reduced processing time,lower collagenase dosage,and increased cell yield without impairing the viability and characteristics of SVF,USASI holds the potential to emerge as a time-saving and cost-effective method for future clinical applications.展开更多
Dune fields at the northern margin of the East Asian monsoon (EAM), are mosaics of mobile and vegetation-stabilized aeolian dunes. These sand dunes are highly sensitive to environmental change, thus the distribution...Dune fields at the northern margin of the East Asian monsoon (EAM), are mosaics of mobile and vegetation-stabilized aeolian dunes. These sand dunes are highly sensitive to environmental change, thus the distribution and the timing of their development may provide important clues to past environmental dynamics. Due to the strong wind erosion and dune migration, long and continuous stratigraphic records are seldom preserved. Synthesizing a large body of events, ultimately producing a relatively complete and high-resolution record, may be a proper method to investigate the dune development history and climate change. In this study, we synthesized a large body of luminescence ages for aeolian deposits from the Mu Us, Otindag, Horqin dune fields at the northern margin of the EAM. The results show that these dune fields, as a whole experienced a most extensive mobility during the early Holocene, followed by a widespread shift toward limited mobility and soil development in the mid-Holocene, and widespread reactivation occurred during late Holocene. The dune developments are directly linked to the effective moisture change controlled by the EAM changes, which respond to the low latitude summer insolation variation. The increased subsidence at the margin contrary to the core EAM, the delay from the feedback of the soil-vegetation-air coupled system, the increased evaporation due to the high temperature all play partial role in the lag of the margin EAM effective moisture change to the low latitude summer insolation. The asynchronous end of the wetter mid-Holocene mainly responds to the southeastwardly shift of the precipitation belt, while the regional sensitivity, response speed and internal feedback also contributed. The correspondence between dune records and North Atlantic drift-ice records of the rapid climate changes implies a close relationship between North Atlantic climate and the frequent dune activity at the northern margin of EAM.展开更多
Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in ...Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in soil weight, seepage force and pore water pressure or decreases in soil mechanical properties. However, even when all these factors are considered, some landslides still cannot be explained well. The increased pore water pressure in a slope reduces the effective stress of the soil and may trigger slope failure. Similarly, the pore gas pressure in a slope also reduces the effective stress of the soil but has been neglected in previous studies. As the viscosity of air is nearly negligible when compared with that of water, the pore gas pressure spreads faster, and its influence is wider, which is harmful for the stability of the slope. In this paper, the effects of pore gas pressure are considered in a shallow slope stability analysis, and a self-designed experiment is conducted to validate the force transfer mechanism.Numerical simulation results show that the pore gas pressure in the slope increases sharply at different locations under heavy rainfall conditions and that the pore gas pressure causes a rapid decrease in the slope safety factor. Laboratory experimental results show that the pore gas pressure throughout the whole unsaturated zone has the same value, which indicates that the gas pressure could spread quickly to the whole sample.展开更多
The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration...The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.展开更多
In order to make further steps in dealing with climate change, China proposed to peak carbon dioxide emissions by about 2030 and to make best efforts for the peaking early. The carbon emission peak target(CEPT) must r...In order to make further steps in dealing with climate change, China proposed to peak carbon dioxide emissions by about 2030 and to make best efforts for the peaking early. The carbon emission peak target(CEPT) must result in a forcing mechanism on China's economic transition. This paper, by following the logical order from "research on carbon emission history" to "carbon emission trend prediction," from "research on paths of realizing peak" to "peak restraint research," provides a general review of current status and development trend of researches on China's carbon emission and its peak value. Furthermore,this paper also reviews the basic theories and specific cases of the forcing mechanism.Based on the existing achievements and development trends in this field, the following research directions that can be further expanded are put forward. First, from the perspective of long-term strategy of sustainable development, we should analyze and construct the forcing mechanism of CEPT in a reverse thinking way. Second, economic transition paths under the forcing mechanism should be systematically studied. Third, by constructing a large-scale policy evaluation model, the emission reduction performance and economic impact of a series of policy measures adopted during the transition process should be quantitatively evaluated.展开更多
Polynyas are irregular open water bodies within the sea ice cover in polar regions under freezing weather conditions.In this study,we reviewed the progress of research work on dynamical forcing,sea ice production(SIP)...Polynyas are irregular open water bodies within the sea ice cover in polar regions under freezing weather conditions.In this study,we reviewed the progress of research work on dynamical forcing,sea ice production(SIP),and water mass formation for both coastal polynyas and open-ocean polynyas in the Southern Ocean,as well as the variability and controlling mechanisms of polynya processes on different time scales.Polynyas play an irreplaceable role in the regulation of global ocean circulation and biological processes in regional ocean ecosystems.The coastal polynyas(latent heat polynyas)are mainly located in the Weddell Sea,the Ross Sea and on the west side of protruding topographic features in East Antarctica.During the formation of coastal polynyas,which are mainly forced by offshore winds or ocean currents,brine rejection triggered by high SIP results in the formation of high salinity shelf water,which is the predecessor of the Antarctic bottom water-the lower limb of the global thermohaline circulation.The open-ocean polynyas(sensible heat polynyas)are mainly found in the Indian sector of the Southern Ocean,which are formed by ocean convection processes generated by topography and negative wind stress curl.The convection processes bring nutrients into the upper ocean,which supports biological production and makes the polynya regions an important sink for atmospheric carbon dioxide.The limitations and challenges in polynya research are also discussed.展开更多
Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al...Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).展开更多
The switching process of ferroelectric thin films in electronic devices is one of the most important requirements for their application. Especially for the different external fields acting on the film surface, the mec...The switching process of ferroelectric thin films in electronic devices is one of the most important requirements for their application. Especially for the different external fields acting on the film surface, the mechanism of domain switching is more complicated. Here we observe the nanoscale domain switchings of Bi3.15Eu0.85Ti3O12 thin film under different mechanical forces at a fast scan rate. As the force increases from initial state to 247.5 n N, the original bright or grey contrasts within the selected grains are all changed into dark contrasts corresponding to the polarization vectors reversed from the up state to the down state, except for the clusters. As the mechanical force increases to 495 n N, the color contrasts in all of the selected grains further turn into grey contrasts and some are even changed into grey contrasts completely showing the typical 90° domain switching. When another stronger loading force 742.5 n N is applied, the phase image becomes unclear and it indicates that the piezoelectric signal can be suppressed under a sufficiently high force, which is coincident with previous experimental results. Furthermore, we adopt the domain switching criterion from the perspective of equilibrium state free energy of ferroelectric nanodomain to explain the mechanisms of force-generated domain switchings.展开更多
In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate ...In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate that the microstructure of secondary cross-linked gels is a thick 3-D network, in which micro-holes and irregular macro-holes are embedded. The maximum width of the irregular macro-holes is 200 nm. In the SCG two different chemical bonds were formed, which leads to the structural inhomogeneity and the asymmetry of the crosslinking density. The structural inhomogeneity of SCG results in the formation of irregular macro-holes. The excessive cross-linking density is the primary reason for dehydration of SCG and the presence of irregular macro-holes in SCG can facilitate dehydration.展开更多
Mechanical forces in the tumor microenvironment(TME)are associated with tumor growth,proliferation,and drug resistance.Strong mechanical forces in tumors alter the metabolism and behavior of cancer cells,thus promotin...Mechanical forces in the tumor microenvironment(TME)are associated with tumor growth,proliferation,and drug resistance.Strong mechanical forces in tumors alter the metabolism and behavior of cancer cells,thus promoting tumor progression and metastasis.Mechanical signals are transformed into biochemical signals,which activate tumorigenic signaling pathways through mechanical transduction.Cancer immunotherapy has recently made exciting progress,ushering in a new era of“chemo-free”treatments.However,immunotherapy has not achieved satisfactory results in a variety of tumors,because of the complex tumor microenvironment.Herein,we discuss the effects of mechanical forces on the tumor immune microenvironment and highlight emerging therapeutic strategies for targeting mechanical forces in immunotherapy.展开更多
Tissues are made up of cells and the extracellular matrix(ECM)which surrounds them.These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life.This astonishing mechanical st...Tissues are made up of cells and the extracellular matrix(ECM)which surrounds them.These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life.This astonishing mechanical stress develops due to the interaction between the live cells and the non-living ECM.Cells in the matrix microenvironment can sense the signals and forces produced and initiate a signaling cascade that plays a crucial role in the body’s normal functioning and influences various properties of the native cells,including growth,proliferation,and differentiation.However,the matrix’s characteristic features also impact the repair and regeneration of the damaged tissues.The current study reviewed how the cell-ECM interaction regulates cellular behavior and physicochemical properties.Herein,we have described the response of cells to mechanical stresses,the importance of substrate stiffness and geometry in tissue regeneration,and the development of scaffolds to mimic the nature of native ECM in 3D for tissue engineering applications has also been discussed.Finally,the study summarizes the conclusions and promising prospects based on the cell-ECM interplay.展开更多
Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experi...Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.展开更多
The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that ...The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.展开更多
The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor. The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magn...The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor. The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined, The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determi-nation of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process. The apparent activation energy was calculated to be 32.8kJ·mol-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.展开更多
Adaptive gaits for legged robots often requires force sensors installed on foot-tips,however impact,temperature or humidity can affect or even damage those sensors.Efforts have been made to realize indirect force esti...Adaptive gaits for legged robots often requires force sensors installed on foot-tips,however impact,temperature or humidity can affect or even damage those sensors.Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms.Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs.This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism.The direct kinematics model and the inverse kinematics model are established.The force Jacobian matrix is derived based on the kinematics model.Thus,the indirect force estimation model is established.Then,the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described.Furthermore,an adaptive tripod static gait is designed.The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait.Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system.An experiment is carried out to validate the indirect force estimation model.The adaptive gait is tested in another experiment.Experiment results show that the robot can successfully step on a 0.2 m-high obstacle.This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.展开更多
Cross-talk between tumor cells and mechanical stress in the tumor microenvironment has been shown to be involved in carcinogenesis.High mechanical stress in tumors can alter the metabolism and behaviors of cancer cell...Cross-talk between tumor cells and mechanical stress in the tumor microenvironment has been shown to be involved in carcinogenesis.High mechanical stress in tumors can alter the metabolism and behaviors of cancer cells and cause cancer cells to attain cancer stem-like cell properties,thus driving tumor progression and promoting metastasis.The mechanical signal is converted into a biochemical signal that activates tumorigenic signaling pathways through mechanotransduction.Herein,we describe the physical changes occurring during reprogramming of cancer cell metabolism,which regulate cancer stem cell functions and promote tumor progression and aggression.Furthermore,we highlight emerging therapeutic strategies targeting mechanotransduction signaling pathways.展开更多
Mechanotransduction,a conversion of mechanical forces into biochemical signals,is essential for human development and physiology.It is observable at all levels ranging from the whole body,organs,tissues,organelles dow...Mechanotransduction,a conversion of mechanical forces into biochemical signals,is essential for human development and physiology.It is observable at all levels ranging from the whole body,organs,tissues,organelles down to molecules.Dysregulation results in various diseases such as muscular dystrophies,hypertension-induced vascular and cardiac hypertrophy,altered bone repair and cell deaths.Since mechanotransduction occurs at nanoscale,nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction.Atomic force microscopy,magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level.Force is also used to control cells,topographically and mechanically by specific types of nano materials for tissue engineering.Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine.Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction,which has been increasingly play important role in the advancement of nanomedicine.展开更多
In this editorial,we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells.In particular,we focus ...In this editorial,we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells.In particular,we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways.To this end,the narrative starts from the dawn of the first studies on animal electricity,reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements.We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis,regeneration,or even malignant transformation.We conclude that there is now mounting evidence for the existence of a Morphogenetic Code,and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.展开更多
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金Project supported by the National Natural Science Foundation of China (Nos. 12025207 and 11872357)the Fundamental Research Funds for the Central Universities。
文摘Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.
基金supported by the National Natural Science Foundation of China(grant nos.81971848 and 82272287)Shanghai Municipal Key Clinical Specialty(grant no,shslczdzk00901)+2 种基金Clinical Research Plan of SHDC(rant nos.SHDC2020CR1019B and SHC2020CR402)Innovative Research Team of High-Level Local Universities in Shanghai(grant no.SSMU-ZDCX20180700)Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by the Science and Technology Commission of Shanghai Municipality(grant no.22MC1940300).
文摘Background:The stromal vascular fraction(SVF),a cluster of stem and progenitor cells isolated from adipose tissue,holds significant promise for application in regenerative medicine.However,the existing methods for SVF isolation are time-consuming and expensive.Thus,in this study,we explored a new method of SVF extrac-tion-ultrasound-assisted SVF isolation(USASI)-and compared the viability and characteristics of SVF isolated using different methods.Methods:SVF extraction methods using different combinations of ultrasound power,ultrasound time,collagenase dosage,and collagenase digestion time were compared with those of the control group(collagenase digestion method).The cell yield and vitality of the SVF were evaluated via cell counting and trypan blue staining.The cell components and immunophenotypes of freshly isolated SVF were analyzed using flow cytometry.The prolifer-ative capacity and differentiation potential of the SVF were also identified.Results:Ultrasonication at 95 W-20 kHz for 30 s followed by digestion with 0.15%collagenase for 30 min was identified as the most suitable parameter for the USASI method in isolating SVF,as recommended based on the evaluation of various tested conditions.The USASI method significantly reduced the collagenase dosage and shortened the digestion time.Compared to the collagenase digestion method,the USASI method had a higher cell yield and cell viability,with no adverse effects on cell components,proliferative capacity,or multipotential differentiation capacity.Conclusion:With reduced processing time,lower collagenase dosage,and increased cell yield without impairing the viability and characteristics of SVF,USASI holds the potential to emerge as a time-saving and cost-effective method for future clinical applications.
基金financially supported by the National Science Foundation of China(Grant No.41102102)"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No.XDB03020300)the Key Research Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-04-03)
文摘Dune fields at the northern margin of the East Asian monsoon (EAM), are mosaics of mobile and vegetation-stabilized aeolian dunes. These sand dunes are highly sensitive to environmental change, thus the distribution and the timing of their development may provide important clues to past environmental dynamics. Due to the strong wind erosion and dune migration, long and continuous stratigraphic records are seldom preserved. Synthesizing a large body of events, ultimately producing a relatively complete and high-resolution record, may be a proper method to investigate the dune development history and climate change. In this study, we synthesized a large body of luminescence ages for aeolian deposits from the Mu Us, Otindag, Horqin dune fields at the northern margin of the EAM. The results show that these dune fields, as a whole experienced a most extensive mobility during the early Holocene, followed by a widespread shift toward limited mobility and soil development in the mid-Holocene, and widespread reactivation occurred during late Holocene. The dune developments are directly linked to the effective moisture change controlled by the EAM changes, which respond to the low latitude summer insolation variation. The increased subsidence at the margin contrary to the core EAM, the delay from the feedback of the soil-vegetation-air coupled system, the increased evaporation due to the high temperature all play partial role in the lag of the margin EAM effective moisture change to the low latitude summer insolation. The asynchronous end of the wetter mid-Holocene mainly responds to the southeastwardly shift of the precipitation belt, while the regional sensitivity, response speed and internal feedback also contributed. The correspondence between dune records and North Atlantic drift-ice records of the rapid climate changes implies a close relationship between North Atlantic climate and the frequent dune activity at the northern margin of EAM.
基金supported by National Key R&D Program of China (Grant No. 2017YFC1501100)the National Natural Science Foundation of China (Grant No. 51279090)Sponsored by Research Fund for Excellent Dissertation of China Three Gorges University
文摘Shallow slope failures induced by rainfall infiltration occur frequently, and the relevant triggering mechanisms have been widely studied.Rainfall-induced landslides are widely recognized to be caused by increases in soil weight, seepage force and pore water pressure or decreases in soil mechanical properties. However, even when all these factors are considered, some landslides still cannot be explained well. The increased pore water pressure in a slope reduces the effective stress of the soil and may trigger slope failure. Similarly, the pore gas pressure in a slope also reduces the effective stress of the soil but has been neglected in previous studies. As the viscosity of air is nearly negligible when compared with that of water, the pore gas pressure spreads faster, and its influence is wider, which is harmful for the stability of the slope. In this paper, the effects of pore gas pressure are considered in a shallow slope stability analysis, and a self-designed experiment is conducted to validate the force transfer mechanism.Numerical simulation results show that the pore gas pressure in the slope increases sharply at different locations under heavy rainfall conditions and that the pore gas pressure causes a rapid decrease in the slope safety factor. Laboratory experimental results show that the pore gas pressure throughout the whole unsaturated zone has the same value, which indicates that the gas pressure could spread quickly to the whole sample.
基金Supported by National Natural Science Foundation of China(Grant No.51405425)Hebei Provincial Natural Science Foundation of China(Grant No.E2014203255)Independent Research Program Topics of Young Teachers in Yanshan University,China(Grant No.13LGA001)
文摘The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model.It is therefore easy to implement trajectory planning,parameter calibration,and motion control,which allows for a variety of application prospects.However,no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed,and there are only a few types of 2R-PM with two CRAs.Thus,a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established.First,combining the theories of reciprocal screw and space geometry,the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored,which give the 2R-PM two CRAs.The different distributions of the constraint forces in each branch are also studied.On the basis of the obtained structural constraints of branches,and considering the geometric relationships of constraint forces in each branch,the appropriate kinematic chains are constructed.Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint,a series of new 2R-PMs with two CRAs are finally obtained.
基金National Natural Science Foundation of China Projects "Study on the Forced Mechanism of Carbon Emission Peak Target in China:Transition Pathways,Emission Reduction Performance and Economic Effects"[grant number:71673217],"Study on Green Behaviors of Households"[grant number:71573217]Shaanxi Soft Science Research Project "Cost and Benefit analysis of Residential End-use Demand Side Management under Smart Grid in Xi'an City"[grant number:2015KRM143]
文摘In order to make further steps in dealing with climate change, China proposed to peak carbon dioxide emissions by about 2030 and to make best efforts for the peaking early. The carbon emission peak target(CEPT) must result in a forcing mechanism on China's economic transition. This paper, by following the logical order from "research on carbon emission history" to "carbon emission trend prediction," from "research on paths of realizing peak" to "peak restraint research," provides a general review of current status and development trend of researches on China's carbon emission and its peak value. Furthermore,this paper also reviews the basic theories and specific cases of the forcing mechanism.Based on the existing achievements and development trends in this field, the following research directions that can be further expanded are put forward. First, from the perspective of long-term strategy of sustainable development, we should analyze and construct the forcing mechanism of CEPT in a reverse thinking way. Second, economic transition paths under the forcing mechanism should be systematically studied. Third, by constructing a large-scale policy evaluation model, the emission reduction performance and economic impact of a series of policy measures adopted during the transition process should be quantitatively evaluated.
基金This work is funded by the National Natural Science Foundation of China(Grant nos.41941008 and 41876221)the Shanghai Science and Technology Committee(Grant nos.20230711100 and 21QA1404300)+2 种基金the Academy of Finland(Grant no.304345)the Ministry of Natural Resources of the People’s Republic of China(Impact and Response of Antarctic Seas to Climate Change,Grant no.IRASCC 1-02-01B)the Advanced Polar Science Institute of Shanghai(APSIS).
文摘Polynyas are irregular open water bodies within the sea ice cover in polar regions under freezing weather conditions.In this study,we reviewed the progress of research work on dynamical forcing,sea ice production(SIP),and water mass formation for both coastal polynyas and open-ocean polynyas in the Southern Ocean,as well as the variability and controlling mechanisms of polynya processes on different time scales.Polynyas play an irreplaceable role in the regulation of global ocean circulation and biological processes in regional ocean ecosystems.The coastal polynyas(latent heat polynyas)are mainly located in the Weddell Sea,the Ross Sea and on the west side of protruding topographic features in East Antarctica.During the formation of coastal polynyas,which are mainly forced by offshore winds or ocean currents,brine rejection triggered by high SIP results in the formation of high salinity shelf water,which is the predecessor of the Antarctic bottom water-the lower limb of the global thermohaline circulation.The open-ocean polynyas(sensible heat polynyas)are mainly found in the Indian sector of the Southern Ocean,which are formed by ocean convection processes generated by topography and negative wind stress curl.The convection processes bring nutrients into the upper ocean,which supports biological production and makes the polynya regions an important sink for atmospheric carbon dioxide.The limitations and challenges in polynya research are also discussed.
文摘Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272158 and 11302185)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.13C901)the Hunan Provincial Natural Science Foundation,China(Grant Nos.14JJ3081 and 13JJ1019)
文摘The switching process of ferroelectric thin films in electronic devices is one of the most important requirements for their application. Especially for the different external fields acting on the film surface, the mechanism of domain switching is more complicated. Here we observe the nanoscale domain switchings of Bi3.15Eu0.85Ti3O12 thin film under different mechanical forces at a fast scan rate. As the force increases from initial state to 247.5 n N, the original bright or grey contrasts within the selected grains are all changed into dark contrasts corresponding to the polarization vectors reversed from the up state to the down state, except for the clusters. As the mechanical force increases to 495 n N, the color contrasts in all of the selected grains further turn into grey contrasts and some are even changed into grey contrasts completely showing the typical 90° domain switching. When another stronger loading force 742.5 n N is applied, the phase image becomes unclear and it indicates that the piezoelectric signal can be suppressed under a sufficiently high force, which is coincident with previous experimental results. Furthermore, we adopt the domain switching criterion from the perspective of equilibrium state free energy of ferroelectric nanodomain to explain the mechanisms of force-generated domain switchings.
文摘In this paper, microscopic characteristics of preformed gels (PGs) and secondary cross-linked gels (SCG) with the same concentration were analyzed by atomic force microscopy (AFM). Experimental results indicate that the microstructure of secondary cross-linked gels is a thick 3-D network, in which micro-holes and irregular macro-holes are embedded. The maximum width of the irregular macro-holes is 200 nm. In the SCG two different chemical bonds were formed, which leads to the structural inhomogeneity and the asymmetry of the crosslinking density. The structural inhomogeneity of SCG results in the formation of irregular macro-holes. The excessive cross-linking density is the primary reason for dehydration of SCG and the presence of irregular macro-holes in SCG can facilitate dehydration.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.81972455 and 81902358)。
文摘Mechanical forces in the tumor microenvironment(TME)are associated with tumor growth,proliferation,and drug resistance.Strong mechanical forces in tumors alter the metabolism and behavior of cancer cells,thus promoting tumor progression and metastasis.Mechanical signals are transformed into biochemical signals,which activate tumorigenic signaling pathways through mechanical transduction.Cancer immunotherapy has recently made exciting progress,ushering in a new era of“chemo-free”treatments.However,immunotherapy has not achieved satisfactory results in a variety of tumors,because of the complex tumor microenvironment.Herein,we discuss the effects of mechanical forces on the tumor immune microenvironment and highlight emerging therapeutic strategies for targeting mechanical forces in immunotherapy.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF),which is financed by the Ministry of Education(Grant Nos.2018R1A6A1A03025582,2019R1D1A3A03103828,2022R1I1A3063302),Korea.
文摘Tissues are made up of cells and the extracellular matrix(ECM)which surrounds them.These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life.This astonishing mechanical stress develops due to the interaction between the live cells and the non-living ECM.Cells in the matrix microenvironment can sense the signals and forces produced and initiate a signaling cascade that plays a crucial role in the body’s normal functioning and influences various properties of the native cells,including growth,proliferation,and differentiation.However,the matrix’s characteristic features also impact the repair and regeneration of the damaged tissues.The current study reviewed how the cell-ECM interaction regulates cellular behavior and physicochemical properties.Herein,we have described the response of cells to mechanical stresses,the importance of substrate stiffness and geometry in tissue regeneration,and the development of scaffolds to mimic the nature of native ECM in 3D for tissue engineering applications has also been discussed.Finally,the study summarizes the conclusions and promising prospects based on the cell-ECM interplay.
基金supported by the National natural Science Foundation of China [grant numbers 12172198, 11272189 and 52078283]Youth Innovation Technology Project of Higher School in Shandong Province [grant number 2019KJG015]。
文摘Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.
文摘The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.
文摘The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor. The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined, The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determi-nation of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process. The apparent activation energy was calculated to be 32.8kJ·mol-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)Research Fund of the State Key Lab of MSV of China(Grant No.MSV201208)
文摘Adaptive gaits for legged robots often requires force sensors installed on foot-tips,however impact,temperature or humidity can affect or even damage those sensors.Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms.Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs.This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism.The direct kinematics model and the inverse kinematics model are established.The force Jacobian matrix is derived based on the kinematics model.Thus,the indirect force estimation model is established.Then,the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described.Furthermore,an adaptive tripod static gait is designed.The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait.Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system.An experiment is carried out to validate the indirect force estimation model.The adaptive gait is tested in another experiment.Experiment results show that the robot can successfully step on a 0.2 m-high obstacle.This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.
基金the National Natural Science Foundation of China(Grant No.11832008 and 11772073)by the Program of the Postgraduate Tutor Team,Chongqing Education Commission(2018).
文摘Cross-talk between tumor cells and mechanical stress in the tumor microenvironment has been shown to be involved in carcinogenesis.High mechanical stress in tumors can alter the metabolism and behaviors of cancer cells and cause cancer cells to attain cancer stem-like cell properties,thus driving tumor progression and promoting metastasis.The mechanical signal is converted into a biochemical signal that activates tumorigenic signaling pathways through mechanotransduction.Herein,we describe the physical changes occurring during reprogramming of cancer cell metabolism,which regulate cancer stem cell functions and promote tumor progression and aggression.Furthermore,we highlight emerging therapeutic strategies targeting mechanotransduction signaling pathways.
基金the National Natural Science Foundation of China(Grant No.31771551 to F.N.).
文摘Mechanotransduction,a conversion of mechanical forces into biochemical signals,is essential for human development and physiology.It is observable at all levels ranging from the whole body,organs,tissues,organelles down to molecules.Dysregulation results in various diseases such as muscular dystrophies,hypertension-induced vascular and cardiac hypertrophy,altered bone repair and cell deaths.Since mechanotransduction occurs at nanoscale,nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction.Atomic force microscopy,magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level.Force is also used to control cells,topographically and mechanically by specific types of nano materials for tissue engineering.Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine.Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction,which has been increasingly play important role in the advancement of nanomedicine.
文摘In this editorial,we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells.In particular,we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways.To this end,the narrative starts from the dawn of the first studies on animal electricity,reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements.We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis,regeneration,or even malignant transformation.We conclude that there is now mounting evidence for the existence of a Morphogenetic Code,and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.