Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,w...Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.展开更多
It has been well known that nozzle end-clearances in a Variable Nozzle Turbine(VNT)are unfavorable for aerodynamic performance, especially at small openings, and efforts to further decrease size of the clearances ar...It has been well known that nozzle end-clearances in a Variable Nozzle Turbine(VNT)are unfavorable for aerodynamic performance, especially at small openings, and efforts to further decrease size of the clearances are very hard due to thermal expansion. In this paper, both the different sizes of nozzle end-clearances and the various ratios of their distribution at the hub and shroud sides were modelled and investigated by performing 3D Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) simulations with a code of transferring the aerodynamic pressure from the CFD results to the FEA calculations. It was found that increasing the size of the nozzle end-clearances divided equally at the hub and shroud sides deteriorates turbine efficiency and turbine wheel reliability, yet increases turbine flow capacity. And, when the total nozzle endclearances remain the same, varying nozzle end-clearances' distribution at the hub and shroud sides not only shifts operation point of a VNT turbine, but also affects the turbine wheel vibration stress.Compared with nozzle hub clearance, the shroud clearance is more sensitive to both aerodynamic performance and reliability of a VNT turbine. Consequently, a possibility is put forward to improve VNT turbine efficiency meanwhile decrease vibration stress by optimizing nozzle end-clearances' distribution.展开更多
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in hi...Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue(HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction(FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics(CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element(FE) model to conduct the computational structural dynamics(CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation(SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.展开更多
A numerical method is designed to examine the response properties of real sea areas to open ocean forcing. The application of this method to modeling the China's adjacent seas shows that the Bohai Sea has a highest p...A numerical method is designed to examine the response properties of real sea areas to open ocean forcing. The application of this method to modeling the China's adjacent seas shows that the Bohai Sea has a highest peak response frequency (PRF) of 1.52 d^-1; the northern Yellow Sea has a PRF of 1.69 d^-1; the Gyeonggi Bay has a high amplitude gain plateau in the frequency band roughly from 1.7 to 2.7 d^-1; the Yellow Sea (includ- ing the Gyeonggi Bay), the East China Sea shelf and the Taiwan Strait have a common high amplitude gain band with frequencies around 1.76 to 1.78 d^-1 and are shown to be a system that responds to the open ocean forcing in favor of amplifying the waves with frequencies in this band; the Beibu Gulf, the Gulf of Thailand and the South China Sea deep basin have PRFs of 0.91, 1.01 and 0.98 d^-1 respectively. In addition, the East China Sea has a Poincare mode PRF of 3.91 d^-1. The PRFs of the Bohal Sea, the northern Yellow Sea, the Bei- bu Gulf and the South China Sea can be explained by a classical quarter (half for the Bohai Sea) wavelength resonance theory. The results show that further investigations are needed for the response dynamics of the Yellow Sea-East China Sea-Taiwan Strait system, the East China Sea Poincare mode, the Talwan Strait, and the Gulf of Thailand.展开更多
Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. T...Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.展开更多
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ...The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.展开更多
Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f...Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f’-1.0/U’-5.0=f’;-1.0/5.75f’;-5.0,not f’=U’/5.75. My apology is hereby given.展开更多
A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-g3 developed by researchers at the Institute of Atmospheric Physics,Chinese Academy of Sciences.This is th...A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-g3 developed by researchers at the Institute of Atmospheric Physics,Chinese Academy of Sciences.This is the first dataset of large ensemble simulations with a climate system model developed by a Chinese modeling center.The simulation has the largest realizations up to now worldwide in terms of single-model initial-condition large ensembles.Each member includes a historical experiment(1850-2014)and an experiment(2015-99)under the very high greenhouse gas emissions Shared Socioeconomic Pathway scenario(SSP5-8.5).The dataset includes monthly and daily temperature,precipitation,and other variables,requiring storage of 275 TB.Additionally,the surface air temperature(SAT)and land precipitation simulated by the FGOALS-g3 super-large ensemble have been validated and projected.The ensemble can capture the response of SAT and land precipitation to external forcings well,and the internal variabilities can be quantified.The availability of more than 100 realizations will help researchers to study rare events and improve the understanding of the impact of internal variability on forced climate changes.展开更多
An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced ...An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced response of bladed disks in frequency domain, which is validated by numerical integration method in time domain. The resonant features of both tuned and mistuned systems are investigated by using this method under various system coupling strengths, viscous dampings, and dry friction darnpings, etc. The results demonstrate that the proposed multi-harmonic method is very efficient for studying the mistuning effects on the resonant response of bladed disks with blade-to-blade dry friction damping, especially considering the combined effects of various system parameters.展开更多
Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were...Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.展开更多
Differential equations of free/forced radial vibrations of axisymmetrically loaded stepped pressure vessels are established by using singular functions. Furthermore, their general solutions are solved, the expression ...Differential equations of free/forced radial vibrations of axisymmetrically loaded stepped pressure vessels are established by using singular functions. Furthermore, their general solutions are solved, the expression of vibration mode function and frequency equations on usual supports are derived with W operator and the forced response of such vessels are calculated.展开更多
Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expressi...Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expression of vibration mode function and frequency equations on usual suppo rts derived with W operator, as well as forced responses of such plates unde r different_type loads disc ussed with Fourier expansion of generalized functions.展开更多
This study is motivated by recognition of complex sandbar evolution patterns under wave actions inside the surf zone. A series of physical model experiments were conducted in a wave flume to investigate sandbar migrat...This study is motivated by recognition of complex sandbar evolution patterns under wave actions inside the surf zone. A series of physical model experiments were conducted in a wave flume to investigate sandbar migration under various wave conditions, including wave groups, regular waves, and random waves. It was observed that under certain wave conditions sandbars move alternately shoreward and seaward rather than continuously in the same direction. The measurements show that the unstable movement of sandbars is closely related to the amplitude modulation of waves. Smaller amplitude modulation tends to produce more intense unstable bar movements. Data analysis further shows that the sandbar migration does not seem to be a passive response of the sea bed to wave forcing, but is most likely caused by the feedback interaction between waves and bed topography.展开更多
Differential equations of free forced vibrations of one -way rectangular stepped thin plated on Winkler 's foundation are established by using singular functions ,their general solutions are solved :exprssion of ...Differential equations of free forced vibrations of one -way rectangular stepped thin plated on Winkler 's foundation are established by using singular functions ,their general solutions are solved :exprssion of vibration mode function and frequency equations on usual supports are derived from W operator :forced responses of such plates under different -type loads are discussed with generalized functions .展开更多
The torsional vibration of power transmission shaft is a phenomenon whose analytical modeling can be represented by a differential equation of motion proposed by technical literature. The solutions of these equations ...The torsional vibration of power transmission shaft is a phenomenon whose analytical modeling can be represented by a differential equation of motion proposed by technical literature. The solutions of these equations need coefficients and parameters that, usually, must be experimentally estimated. This work uses a resistive electric SG (strain gage) to dynamically determine strains produced in the shaft due to harmonic oscillatory motion under multiaxial loading. This movement is simulated on a prototype specially developed for this purpose. It comprises a pulley attached to the end of a stepped cantilevered shaft, which is clamped at the opposite end. In this configuration, a cam generates a torque to the system, springs regulate the stiffness and the damping coefficient of the assembly, as well as they can be suitably adjusted to produce an underdamped condition. The main advantage, highlighted in this study, refers to a major simplification. Although the system under study shows multiple degrees of freedom (torsion and bending), the shape and the positioning of linking SGs with the resistor bridge (Wheatstone Bridge), allow "to evaluate the loading effects independently, as if only one degree of freedom of the system exists at a time domain. Strains graphs for two forms of cyclic torsional oscillation, analytical and experimental, were successfully generated.展开更多
Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings ...Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.展开更多
To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented ...To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented to determine the first-and second-order equivalent viscous damping and stiffness,the peak responses,and the damper force of the above structure.Based on the fact that the dynamic characteristics of a general linear viscoelastically damped structure are fully determined by its free vibration properties and the relaxation time constants of a Maxwell fluid damper and supplemental brace-viscous damper system in engineering practice are all small,the method of improved multiple time scales and the equivalent criterion in which all free vibration properties are the same are used to obtain the first-and second-order equivalent viscous damping and stiffness of the above structure in closed form.The accuracy of the proposed method is higher and significantly better than that of the modal strain energy method.Furthermore,in the parametric range of the requirements of the Chinese "Code for Seismic Design of Buildings",the error of the proposed second-order equivalent system for the abovementioned engineering structure is not more than 0.5%.展开更多
The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The moti...The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green's function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.展开更多
The Building Standard Law of Japan and related Enforcement Order and Notifications have been substantially revised since the year 2000 to introduce a performance-based regulatory and deregulation system for building c...The Building Standard Law of Japan and related Enforcement Order and Notifications have been substantially revised since the year 2000 to introduce a performance-based regulatory and deregulation system for building control systems. Up to then,time-history analyses were mandatory for isolated buildings and had to be specially approved by the Minster of the Ministry of Construction (MOC).Simplified design procedures based on the equivalent linear method for seismically isolated buildings have been issued as'Notification 2009-Structnral calculation procedure for buildings with seismic isolation'from MOC,and are now integrated into the Ministry of Land,Infrastructure,and Transportation (MLIT).Along with Notification 2009,'Notification 1446 of year 2000-Standard for specifications and test methods for seismic isolation devices'was also issued.Buildings with heights equal to or less than 60m and that are designed according to these Notifications,including base isolated buildings,only need approval from local building officials,and no longer require the special approval of the Minister of MLIT.This paper summarizes:1) some statistics related to buildings with seismic isolation completed up to the end of 2001; 2) simplified design procedures required by Notification 2009 of year 2000;and 3) performance of seismic isolation devices required by Notification 1446 of year 2000.展开更多
One test rig with three blades and two Under-Platform Dampers(UPDs) is established to better understand the dynamical behavior of blades with UPDs. A pre-loaded spring is used to simulate the centrifugal load acting o...One test rig with three blades and two Under-Platform Dampers(UPDs) is established to better understand the dynamical behavior of blades with UPDs. A pre-loaded spring is used to simulate the centrifugal load acting on the damper, thereby achieving continuous adjustment of the pressing load. UPDs with different forms, sizes and materials are carefully designed as experimental control groups. Noncontact measurement via a laser Doppler velocimeter is employed and contact excitation which is performed by an electromagnetic exciter is adopted to directly obtain the magnitude of the excitation load by a force sensor mounted on the excitation rod. Particular attention is paid to the influence of the contact status of the contact surfaces, e.g. the pressure-sensitive paper is used to measure the effective contact area of the UPDs. The experimental variables are selected as the centrifugal force, the amplitude of the excitation force, the damper mass, the effective contact area, and the damper material. The Frequency Response Function(FRF) of the blade under different experimental parameters is obtained by slow frequency sweep under sinusoidal excitation to study the influence of each parameter on the dynamic characteristics of the blade and the mechanism analysis is carried out combined with the experimental results.展开更多
基金funded by the National Natural Science Foundation of China(No.51176013)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111101130002),China
文摘Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.
基金co-supported by the Natural Science Foundation of Hebei Province of China(No.E2017402135)the Program of Science and Technology Research and Development of Handan of China(No.1621212047-2)
文摘It has been well known that nozzle end-clearances in a Variable Nozzle Turbine(VNT)are unfavorable for aerodynamic performance, especially at small openings, and efforts to further decrease size of the clearances are very hard due to thermal expansion. In this paper, both the different sizes of nozzle end-clearances and the various ratios of their distribution at the hub and shroud sides were modelled and investigated by performing 3D Computational Fluid Dynamics(CFD) and Finite Element Analysis(FEA) simulations with a code of transferring the aerodynamic pressure from the CFD results to the FEA calculations. It was found that increasing the size of the nozzle end-clearances divided equally at the hub and shroud sides deteriorates turbine efficiency and turbine wheel reliability, yet increases turbine flow capacity. And, when the total nozzle endclearances remain the same, varying nozzle end-clearances' distribution at the hub and shroud sides not only shifts operation point of a VNT turbine, but also affects the turbine wheel vibration stress.Compared with nozzle hub clearance, the shroud clearance is more sensitive to both aerodynamic performance and reliability of a VNT turbine. Consequently, a possibility is put forward to improve VNT turbine efficiency meanwhile decrease vibration stress by optimizing nozzle end-clearances' distribution.
基金supported by the National Natural Science Foundation of China(Grant No.51276018)
文摘Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue(HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction(FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics(CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element(FE) model to conduct the computational structural dynamics(CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation(SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.
基金The National Natural Science Foundation of China under contract Nos 40676009 and 40606006the Basic Research Project of Qingdao Science and Technology Program of China under contract No.11-1-4-98-jch
文摘A numerical method is designed to examine the response properties of real sea areas to open ocean forcing. The application of this method to modeling the China's adjacent seas shows that the Bohai Sea has a highest peak response frequency (PRF) of 1.52 d^-1; the northern Yellow Sea has a PRF of 1.69 d^-1; the Gyeonggi Bay has a high amplitude gain plateau in the frequency band roughly from 1.7 to 2.7 d^-1; the Yellow Sea (includ- ing the Gyeonggi Bay), the East China Sea shelf and the Taiwan Strait have a common high amplitude gain band with frequencies around 1.76 to 1.78 d^-1 and are shown to be a system that responds to the open ocean forcing in favor of amplifying the waves with frequencies in this band; the Beibu Gulf, the Gulf of Thailand and the South China Sea deep basin have PRFs of 0.91, 1.01 and 0.98 d^-1 respectively. In addition, the East China Sea has a Poincare mode PRF of 3.91 d^-1. The PRFs of the Bohal Sea, the northern Yellow Sea, the Bei- bu Gulf and the South China Sea can be explained by a classical quarter (half for the Bohai Sea) wavelength resonance theory. The results show that further investigations are needed for the response dynamics of the Yellow Sea-East China Sea-Taiwan Strait system, the East China Sea Poincare mode, the Talwan Strait, and the Gulf of Thailand.
基金National Hi-tech Research and Development Program of China(863 Program,No.2001AA42330).
文摘Negative step response experimental method is used in wrist force sensor's dynamic performance calibration. The exciting manner of negative step response method is the same as wrist force sensor's load in working. This experimental method needn't special experiment equipments. Experiment's dynamic repeatability is good. So wrist force sensor's dynamic performance is suitable to be calibrated by negative step response method. A new correlation wavelet transfer method is studied. By wavelet transfer method, the signal is decomposed into two dimensional spaces of time-frequency. So the problem of negative step exciting energy concentrating in the low frequency band is solved. Correlation wavelet transfer doesn't require that wavelet primary function be orthogonal and needn't wavelet reconstruction. So analyzing efficiency is high. An experimental bench is designed and manufactured to load the wrist force sensor orthogonal excitation force/moment. A piezoelectric force sensor is used to setup soft trigger and calculate the value of negative step excitation. A wrist force sensor is calibrated. The pulse response function is calculated after negative step excitation and step response have been transformed to positive step excitation and step response. The pulse response function is transferred to frequency response function. The wrist force sensor's dynamic characteristics are identified by the frequency response function.
基金Funded by the National Natural Science Foundation of China(Nos.51108237 and 51178112)
文摘The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.
文摘Because of my carelessness,Eq.(1)in the paper "An approximate method for calculating the fluid force and response of a circular cylinder at lock-in"(China Ocean Engineering,22(3),2008,pp.373)should be f’-1.0/U’-5.0=f’;-1.0/5.75f’;-5.0,not f’=U’/5.75. My apology is hereby given.
基金supported by the National Key Program for Developing Basic Sciences (Grant No. 2020YFA0608902)the National Natural Science Foundation of China (Grant Nos. 41976026 and 41931183)the technical support from the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)
文摘A super-large ensemble simulation dataset with 110 members has been produced by the fully coupled model FGOALS-g3 developed by researchers at the Institute of Atmospheric Physics,Chinese Academy of Sciences.This is the first dataset of large ensemble simulations with a climate system model developed by a Chinese modeling center.The simulation has the largest realizations up to now worldwide in terms of single-model initial-condition large ensembles.Each member includes a historical experiment(1850-2014)and an experiment(2015-99)under the very high greenhouse gas emissions Shared Socioeconomic Pathway scenario(SSP5-8.5).The dataset includes monthly and daily temperature,precipitation,and other variables,requiring storage of 275 TB.Additionally,the surface air temperature(SAT)and land precipitation simulated by the FGOALS-g3 super-large ensemble have been validated and projected.The ensemble can capture the response of SAT and land precipitation to external forcings well,and the internal variabilities can be quantified.The availability of more than 100 realizations will help researchers to study rare events and improve the understanding of the impact of internal variability on forced climate changes.
基金National Nature Science Foundation of China (NO.50275121)
文摘An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced response of bladed disks in frequency domain, which is validated by numerical integration method in time domain. The resonant features of both tuned and mistuned systems are investigated by using this method under various system coupling strengths, viscous dampings, and dry friction darnpings, etc. The results demonstrate that the proposed multi-harmonic method is very efficient for studying the mistuning effects on the resonant response of bladed disks with blade-to-blade dry friction damping, especially considering the combined effects of various system parameters.
基金Project(51075350)supported by the National Natural Science Foundation of China
文摘Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.
文摘Differential equations of free/forced radial vibrations of axisymmetrically loaded stepped pressure vessels are established by using singular functions. Furthermore, their general solutions are solved, the expression of vibration mode function and frequency equations on usual supports are derived with W operator and the forced response of such vessels are calculated.
文摘Differential equations of free/forc ed vibrations of stepped rectangular thin plates on Winkler's foundation are estab lished by using singular functions, and their general solutions are also solved for expression of vibration mode function and frequency equations on usual suppo rts derived with W operator, as well as forced responses of such plates unde r different_type loads disc ussed with Fourier expansion of generalized functions.
基金supported by the National Natural Science Foundation of China(Grant No51079024)
文摘This study is motivated by recognition of complex sandbar evolution patterns under wave actions inside the surf zone. A series of physical model experiments were conducted in a wave flume to investigate sandbar migration under various wave conditions, including wave groups, regular waves, and random waves. It was observed that under certain wave conditions sandbars move alternately shoreward and seaward rather than continuously in the same direction. The measurements show that the unstable movement of sandbars is closely related to the amplitude modulation of waves. Smaller amplitude modulation tends to produce more intense unstable bar movements. Data analysis further shows that the sandbar migration does not seem to be a passive response of the sea bed to wave forcing, but is most likely caused by the feedback interaction between waves and bed topography.
文摘Differential equations of free forced vibrations of one -way rectangular stepped thin plated on Winkler 's foundation are established by using singular functions ,their general solutions are solved :exprssion of vibration mode function and frequency equations on usual supports are derived from W operator :forced responses of such plates under different -type loads are discussed with generalized functions .
文摘The torsional vibration of power transmission shaft is a phenomenon whose analytical modeling can be represented by a differential equation of motion proposed by technical literature. The solutions of these equations need coefficients and parameters that, usually, must be experimentally estimated. This work uses a resistive electric SG (strain gage) to dynamically determine strains produced in the shaft due to harmonic oscillatory motion under multiaxial loading. This movement is simulated on a prototype specially developed for this purpose. It comprises a pulley attached to the end of a stepped cantilevered shaft, which is clamped at the opposite end. In this configuration, a cam generates a torque to the system, springs regulate the stiffness and the damping coefficient of the assembly, as well as they can be suitably adjusted to produce an underdamped condition. The main advantage, highlighted in this study, refers to a major simplification. Although the system under study shows multiple degrees of freedom (torsion and bending), the shape and the positioning of linking SGs with the resistor bridge (Wheatstone Bridge), allow "to evaluate the loading effects independently, as if only one degree of freedom of the system exists at a time domain. Strains graphs for two forms of cyclic torsional oscillation, analytical and experimental, were successfully generated.
基金supported by the National Natural Science Foundation of China (90715040)
文摘Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.
基金National Natural Science Foundation of China under Grant No.51468005 and 51368008Guangxi Natural Science Foundation under Grant No.2014GXNSFAA118315the Innovative Research Team Program of Guangxi University of Science and Technology(2015)
文摘To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented to determine the first-and second-order equivalent viscous damping and stiffness,the peak responses,and the damper force of the above structure.Based on the fact that the dynamic characteristics of a general linear viscoelastically damped structure are fully determined by its free vibration properties and the relaxation time constants of a Maxwell fluid damper and supplemental brace-viscous damper system in engineering practice are all small,the method of improved multiple time scales and the equivalent criterion in which all free vibration properties are the same are used to obtain the first-and second-order equivalent viscous damping and stiffness of the above structure in closed form.The accuracy of the proposed method is higher and significantly better than that of the modal strain energy method.Furthermore,in the parametric range of the requirements of the Chinese "Code for Seismic Design of Buildings",the error of the proposed second-order equivalent system for the abovementioned engineering structure is not more than 0.5%.
基金supported by the National Natural Science Foundation of China (Grant No. 51009032)the Scientific Research Foundation of Third Institute of Oceanography, SOA (Grant No. 201003)the Open Research Fund Program of Hunan Province Key Laboratory of Water, Sediment Science & Flood Hazard Prevention (Grant No. 2010SS03)
文摘The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green's function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.
文摘The Building Standard Law of Japan and related Enforcement Order and Notifications have been substantially revised since the year 2000 to introduce a performance-based regulatory and deregulation system for building control systems. Up to then,time-history analyses were mandatory for isolated buildings and had to be specially approved by the Minster of the Ministry of Construction (MOC).Simplified design procedures based on the equivalent linear method for seismically isolated buildings have been issued as'Notification 2009-Structnral calculation procedure for buildings with seismic isolation'from MOC,and are now integrated into the Ministry of Land,Infrastructure,and Transportation (MLIT).Along with Notification 2009,'Notification 1446 of year 2000-Standard for specifications and test methods for seismic isolation devices'was also issued.Buildings with heights equal to or less than 60m and that are designed according to these Notifications,including base isolated buildings,only need approval from local building officials,and no longer require the special approval of the Minister of MLIT.This paper summarizes:1) some statistics related to buildings with seismic isolation completed up to the end of 2001; 2) simplified design procedures required by Notification 2009 of year 2000;and 3) performance of seismic isolation devices required by Notification 1446 of year 2000.
基金the financial support from the National Natural Science Foundation of China (Nos. 11772022, 91860205 and 51475021)the experimental devices provided by Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University (VCAME201602)
文摘One test rig with three blades and two Under-Platform Dampers(UPDs) is established to better understand the dynamical behavior of blades with UPDs. A pre-loaded spring is used to simulate the centrifugal load acting on the damper, thereby achieving continuous adjustment of the pressing load. UPDs with different forms, sizes and materials are carefully designed as experimental control groups. Noncontact measurement via a laser Doppler velocimeter is employed and contact excitation which is performed by an electromagnetic exciter is adopted to directly obtain the magnitude of the excitation load by a force sensor mounted on the excitation rod. Particular attention is paid to the influence of the contact status of the contact surfaces, e.g. the pressure-sensitive paper is used to measure the effective contact area of the UPDs. The experimental variables are selected as the centrifugal force, the amplitude of the excitation force, the damper mass, the effective contact area, and the damper material. The Frequency Response Function(FRF) of the blade under different experimental parameters is obtained by slow frequency sweep under sinusoidal excitation to study the influence of each parameter on the dynamic characteristics of the blade and the mechanism analysis is carried out combined with the experimental results.