期刊文献+
共找到797,892篇文章
< 1 2 250 >
每页显示 20 50 100
The forecasting efficiency under different selected regions by Pattern Informatics Method and seismic potential estimation in the North-South Seismic Zone
1
作者 Weixi Tian Yongxian Zhang 《Earthquake Science》 2024年第4期368-382,共15页
In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(... In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(PI)method,as an effective long and medium term earthquake forecasting method,has been applied to the strong earthquake forecasting in Chinese mainland and results have shown the positive performance.The earthquake catalog with magnitude above M_(S)3.0 since 1970 provided by China Earthquake Networks Center was employed in this study and the Receiver Operating Characteristic(ROC)method was applied to test the forecasting efficiency of the PI method in each selected region related to the North-South Seismic Zone systematically.Based on this,we selected the area with the best ROC testing result and analyzed the evolution process of the PI hotspot map reflecting the small seismic activity pattern prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes.A“forward”forecast for the area was carried out to assess seismic risk.The study shows the following.1)PI forecasting has higher forecasting efficiency in the selected study region where the difference of seismicity in any place of the region is smaller.2)In areas with smaller differences of seismicity,the activity pattern of small earthquakes prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes can be obtained by analyzing the spatio-temporal evolution process of the PI hotspot map.3)The hotspot evolution in and around the southern Tazang fault in the study area is similar to that prior to the strong earthquakes,which suggests the possible seismic hazard in the future.This study could provide some ideas to the seismic hazard assessment in other regions with high seismicity,such as Japan,Californi,Turkey,and Indonesia. 展开更多
关键词 Luding M_(S)6.8 and Menyuan M_(S)6.9 earthquake Pattern Informatics method North-South Seismic Zone earthquake forecasting seismic activity pattern.
下载PDF
Better use of experience from other reservoirs for accurate production forecasting by learn-to-learn method
2
作者 Hao-Chen Wang Kai Zhang +7 位作者 Nancy Chen Wen-Sheng Zhou Chen Liu Ji-Fu Wang Li-Ming Zhang Zhi-Gang Yu Shi-Ti Cui Mei-Chun Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期716-728,共13页
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie... To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods. 展开更多
关键词 Production forecasting Multiple patterns Few-shot learning Transfer learning
下载PDF
Generalized load graphical forecasting method based on modal decomposition
3
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 Load forecasting Generalized load Image processing DenseNet Modal decomposition
下载PDF
Ingredients-based Methodology and Fuzzy Logic Combined Short-Duration Heavy Rainfall Short-Range Forecasting:An Improved Scheme
4
作者 TIAN Fu-you XIA Kun +2 位作者 SUN Jian-hua ZHENG Yong-guang HUA Shan 《Journal of Tropical Meteorology》 SCIE 2024年第3期241-256,共16页
Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos... Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena. 展开更多
关键词 ingredients-based methodology fuzzy logic approach probability of short-duration heavy rainfall(SHR) improved forecasting scheme objectively obtained membership functions
下载PDF
Introduction to the Special Issue on Hybrid Intelligent Methods for Forecasting in Resources and Energy Field
5
作者 Wei-Chiang Hong Yi Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期763-766,共4页
Precise resources and energy forecasting are important to facilitate the decision-making process in order to achieve higher efficiency and reliability in energy system planning,maintenance,operation,security,and so on... Precise resources and energy forecasting are important to facilitate the decision-making process in order to achieve higher efficiency and reliability in energy system planning,maintenance,operation,security,and so on.In the past decades,many resources and energy forecasting models have been continuously proposed to increase the forecasting accuracy,especially intelligence models(e.g.,artificial neural networks,support vector regression,evolutionary computation models,etc.).Meanwhile,due to the great development of optimization methods(e.g.,quadratic programming method,differential empirical mode method,evolutionary algorithms,etc.),many novel hybrid methods combined with the above-mentioned intelligent-optimization-based methods have also been proposed to achieve satisfactory forecasting accuracy levels.It is worthwhile to explore the tendency and development of intelligent-optimization-based hybrid methodologies and to enrich their practical performances,particularly for resources and energy forecasting. 展开更多
关键词 artificial forecasting OPTIMIZATION
下载PDF
Comparison of the City Water Consumption Short-Term Forecasting Methods 被引量:7
6
作者 刘洪波 张宏伟 《Transactions of Tianjin University》 EI CAS 2002年第3期211-215,共5页
There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and ... There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method. 展开更多
关键词 city water consumption short-term forecasting method comparison APPLICABILITY
下载PDF
A Review on Sources,Extractions and Analysis Methods of a Sustainable Biomaterial:Tannins 被引量:2
7
作者 Antonio Pizzi Marie-Pierre Laborie Zeki Candan 《Journal of Renewable Materials》 EI CAS 2024年第3期397-425,共29页
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ... Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses. 展开更多
关键词 TANNINS FLAVONOIDS SOURCES extraction methods analysis methods
下载PDF
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
8
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
9
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:5
10
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method STRUCTURE Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
11
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
Seasonal Characteristics of Forecasting Uncertainties in Surface PM_(2.5)Concentration Associated with Forecast Lead Time over the Beijing-Tianjin-Hebei Region
12
作者 Qiuyan DU Chun ZHAO +6 位作者 Jiawang FENG Zining YANG Jiamin XU Jun GU Mingshuai ZHANG Mingyue XU Shengfu LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期801-816,共16页
Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological foreca... Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation. 展开更多
关键词 PM_(2.5) forecasting uncertainties forecast lead time meteorological fields Beijing-Tianjin-Hebei region
下载PDF
Promising Results Predict Role for Artificial Intelligence in Weather Forecasting
13
作者 Mitch Leslie 《Engineering》 SCIE EI CAS CSCD 2024年第8期10-12,共3页
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,... Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models. 展开更多
关键词 forecasting humidity WEATHER
下载PDF
Hybrid Strategy of Partitioned and Monolithic Methods for Solving Strongly Coupled Analysis of Inverse and Direct Piezoelectric and Circuit Coupling
14
作者 Daisuke Ishihara Syunnosuke Nozaki +1 位作者 Tomoya Niho Naoto Takayama 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1371-1386,共16页
The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n... The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions. 展开更多
关键词 Structure-piezoelectric-circuit interaction energy harvesting partitioned method monolithic method hybrid method
下载PDF
Comparison among the UECM Model, and the Composite Model in Forecasting Malaysian Imports
15
作者 Mohamed A. H. Milad Hanan Moh. B. Duzan 《Open Journal of Statistics》 2024年第2期163-178,共16页
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f... For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting. 展开更多
关键词 Composite Model UECM ARIMA forecasting MALAYSIA
下载PDF
Application of Kalman Filter Method in the Forecast of Temperature in Nanchang
16
作者 Feifei WU Xiaoyou LONG +1 位作者 Chuanshi TANG Landi ZHONG 《Meteorological and Environmental Research》 2024年第4期32-35,共4页
A temperature forecasting model was created firstly based on the Kalman filter method,and then used to predict the highest and lowest temperature in Nanchang station from October 27 to November 1,2017.Finally,accordin... A temperature forecasting model was created firstly based on the Kalman filter method,and then used to predict the highest and lowest temperature in Nanchang station from October 27 to November 1,2017.Finally,according to the empirical forecasting method,guidance forecasts were established for the northern,central,and southern parts of Nanchang City.After inspection,it was found that the temperature prediction model established based on the Kalman filter method in Nanchang station had good prediction performance,and especially in the 24-hour forecast,it had advantages over the European Center.The accuracy of low temperature forecast was better than that of high temperature forecast. 展开更多
关键词 Kalman filter method Temperature forecast Nanchang City
下载PDF
Stability Analysis and Performance Evaluation of Additive Mixed-Precision Runge-Kutta Methods
17
作者 Ben Burnett Sigal Gottlieb Zachary J.Grant 《Communications on Applied Mathematics and Computation》 EI 2024年第1期705-738,共34页
Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implic... Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were previously proposed and analyzed.These specially designed methods use reduced precision for the implicit computations and full precision for the explicit computations.In this work,we analyze the stability properties of these methods and their sensitivity to the low-precision rounding errors,and demonstrate their performance in terms of accuracy and efficiency.We develop codes in FORTRAN and Julia to solve nonlinear systems of ODEs and PDEs using the mixed-precision additive Runge-Kutta(MP-ARK)methods.The convergence,accuracy,and runtime of these methods are explored.We show that for a given level of accuracy,suitably chosen MP-ARK methods may provide significant reductions in runtime. 展开更多
关键词 Mixed precision Runge-Kutta methods Additive methods ACCURACY
下载PDF
CALTM:A Context-Aware Long-Term Time-Series Forecasting Model
18
作者 Canghong Jin Jiapeng Chen +3 位作者 Shuyu Wu Hao Wu Shuoping Wang Jing Ying 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期873-891,共19页
Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approache... Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series forecasting.However,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term forecastings.Consequently,the effectiveness of existing methods diminishes in such scenarios.Therefore,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic flow.Our model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final forecasting.Experimental results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios. 展开更多
关键词 Traffic volume forecasting scene matching multi module fusion
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
19
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
20
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous Galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部