This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation...This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation in forest management through membership of Community Forest Association (CFA) or not. Cross-sectional survey research design was applied for collecting quantitative data using a semi-structured questionnaire administered to 384 households stratified on the basis of PFM participation status. Qualitative data was collected through focused group discussions using a checklist and key informant interviews using an interview schedule. Using Statistical Package for Social Sciences version 25, Binomial regression with Wald Chi-square was analyzed to identify factors perceived to be significantly influencing benefits for PFM participants and Pearson Chi-square to compare factors perceived to be affecting PFM and non-PFM participants. CFA members participation in PFM was significantly and positively affected by benefits of PFM income generating activities and forest products accessed in the forest. Benefits linked to Plantation Establishment for Livelihood Improvement System (PELIS) for CFA members were significantly reduced by enforcement of moratorium policy since February 2018, diseases and pests, poor PELIS guideline adherence and animal damage. Benefits related to state forest access for firewood by the CFA members were negatively influenced by the moratorium policy. Diseases and pests affected benefits associated with bee keeping significantly. Comparing factors under different PFM participation status, crop production was significantly affected by policy changes, pest and diseases, animal damage and PELIS guideline adherence for CFA members than for Non-CFA members. Policy changes also affected the CFA members significantly in firewood collection and access to fodder in the state forest than the Non-CFA members. Hence, sustainable community participation in Upper Imenti Forest management requires: increasing PFM benefits, addressing factors reducing benefits and enhancing active participation of CFA members in PFM related decision-making processes.展开更多
Bushfires are devastating to forest managers,owners,residents,and the natural environment.Recent tech-nological advances indicate a potential for faster response times in terms of detecting and suppressing fires.Howev...Bushfires are devastating to forest managers,owners,residents,and the natural environment.Recent tech-nological advances indicate a potential for faster response times in terms of detecting and suppressing fires.However,to date,all these technologies have been applied in isola-tion.This paper introduces the latest fire detection and sup-pression technologies from ground to space.An operations research method was used to assemble these technologies into a theoretical framework for fire detection and suppres-sion.The framework harnesses the advantages of satellite-based,drone,sensor,and human reporting technologies as well as image processing and artificial intelligence machine learning.The study concludes that,if a system is designed to maximise the use of available technologies and carefully adopts them through complementary arrangements,a fire detection and resource suppression system can achieve the ultimate aim:to reduce the risk of fire hazards and the dam-age they may cause.展开更多
Background: The loss of soil organic carbon(SOC) following conversion of natural forests to managed plantations has been widely reported. However, how different SOC fractions and microbial necromass C(MNC) respond to ...Background: The loss of soil organic carbon(SOC) following conversion of natural forests to managed plantations has been widely reported. However, how different SOC fractions and microbial necromass C(MNC) respond to forest management practices remains unclear.Methods: We sampled 0–10 cm mineral soil from three different management plantations and one protected forest in Guangxi, Southern China, to explore how forest management practices affect SOC through changing mineralassociated C(MAOC) and particulate organic C(POC), as well as fungal and bacterial necromass C.Results: Compared with the protected forest, SOC and POC in the abandoned, mixed and Eucalyptus plantations significantly decreased, but MAOC showed no significant change, indicating that the loss of SOC was mainly from decreased POC under forest management. Forest management also significantly reduced root biomass, soil extractable organic C, MNC, and total microbial biomass(measured by phospholipid fatty acid), but increased fungi-to-bacteria ratio(F:B) and soil peroxidase activity. Moreover, POC was positively correlated with root biomass, total microbial biomass and MNC, and negatively with F:B and peroxidase activity. These results suggested that root input and microbial properties together regulated soil POC dynamics during forest management.Conclusion: Overall, this study indicates that forest management intervention significantly decreases SOC by reducing POC in Guangxi, Southern China, and suggests that forest protection can help to sequester more soil C in forest ecosystems.展开更多
Natural regeneration is the basis of a dynamic and demographic balance of plant populations. The objective of this study was to assess the natural regeneration potential of woody species along secondary roads post-log...Natural regeneration is the basis of a dynamic and demographic balance of plant populations. The objective of this study was to assess the natural regeneration potential of woody species along secondary roads post-logging abandoned since 2008 and 2018. In the two Annual Allowable Cuts (AAC 2008 and AAC 2018), 24 regenerating sub-plots (i.e. 12 sub-plots for AAC 2008 and 12 sub-plots for AAC 2018) with a unit area of 5 m × 5 m were delimited with a total area of 0.06 ha (i.e. 0.03 ha for each AAC). The abundance and diversity of woody species were respectively inventoried and estimated. Two estimators of the specific richness were used to estimate the floristic diversity of each Annual Allowable Cuts (AAC). The results reveal globally 88 woody species in the AAC 2008 and 241 woody species in the AAC 2018, with respective average densities of 2933 stem/ha and 8033 stem/ha. There was a very highly significant difference between the mean densities of the two AAC (Kruskal-Wallis test;H = 2.36, p-value < 0.000). The results also highlight a great diversity and a relatively high abundance of woody species in the 2018 AAC compared to the 2008 AAC. Also, the spatial structuring of the sub-plots on the basis of Principal Component Analysis (PCA) demonstrates that the floristic composition of the two AAC is globally different. The study suggests silvicultural interventions and the long-term assessment of regenerating woody species along abandoned secondary roads in order to guarantee the sustainable management of their population.展开更多
The history, current situation, and development trend of GIS (Geographic Information System) applied in the forest resources management were discussed in this paper. On the basis of geographic spatial characteristics ...The history, current situation, and development trend of GIS (Geographic Information System) applied in the forest resources management were discussed in this paper. On the basis of geographic spatial characteristics of forest resources data, a component geographic information system (ComGIS) was developed for forest resources management. The system embeds a GIS ActiveX control MapObjects (Inc. ESRI) on Visual C++ platform. System design, data organization and achieving way were studied and expatiated by taking Xigangzi Forestry Centre as study object. The system has many useful functions,, such as adding and display of various map layers, zoom of map by wheeling mouse, attribute and spatial data querying, map auto roaming, features rendering based on the spatial trait of data, label controlling through attribute data band with vector graph, as well as output of 'Column chart' for showing the result of statistics. At the same time, parts of source codes are attached.展开更多
It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with ...It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.展开更多
The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifyin...The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifying forest utilisation, and in certain areas due to increasing natural disturbances, boreal forest age-class structures have changed rapidly, so that the proportion of old forest has substantially declined, while that of young post-harvest and post-natural-disturbance forest proportions have increased. In the future, with a warming climate in certain boreal regions, this trend may further be enhanced due to an increase in natural disturbances and large-scale use of forest biomass to replace fossil-based fuels and products.The major drivers of change of forest age class distributions and structures include the use of clearcut shortrotation harvesting, more frequent and severe natural disturbances due to climate warming in certain regions. The decline in old forest area, and increase in managed young forest lacking natural post-disturbance structural legacies,represent a major transformation in the ecological conditions of the boreal forest beyond historical limits of variability.This may introduce a threat to biodiversity, ecosystem resilience and long-term adaptive capacity of the forest ecosystem.To safeguard boreal forest biodiversity and ecosystem functioning, and to maintain the multiple services provided to societies by this forest biome, it is pivotal to maintain an adequate share and the ecological qualities of young postdisturbance stages, along with mature forest stages with old-growth characteristics. This requires management for natural post-disturbance legacy structures, and innovative use of diverse uneven-aged and continuous cover management approaches to maintain critical late-successional forest structures in landscapes.展开更多
Based on an analysis of the characteristics of the Forest Resources Management Information System of each development phase, and consideration of the technical trend in Geographic Information System (GIS) in the Inter...Based on an analysis of the characteristics of the Forest Resources Management Information System of each development phase, and consideration of the technical trend in Geographic Information System (GIS) in the Internet Age, this paper explores the importance and the feasibility of setting up Forest Resources Management Information System based on the WEBGIS. At the same time, based on the experience of our study, the paper explores the function, structure and method of developing the Forest Resources Management Information System based on WEBGIS. With the technology of WEBGIS, the Forest Resources Management Information System with data from Huoditang Farm was set up, which makes a great impact on forest resources management. So setting up the Forest Resources Management Information System based on WEBGIS is a trend of forest resources management. In the course of setting up this system, we must pay attention to following questions: 1) unify data standard and information encoding; 2) change mind.展开更多
Background:China has committed to achieving peak CO_(2)emissions before 2030 and carbon neutrality before 2060;therefore,accelerated efforts are needed to better understand carbon accounting in industry and energy fie...Background:China has committed to achieving peak CO_(2)emissions before 2030 and carbon neutrality before 2060;therefore,accelerated efforts are needed to better understand carbon accounting in industry and energy fields as well as terrestrial ecosystems.The carbon sink capacity of plantation forests contributes to the mitigation of climate change.Plantation forests throughout the world are intensively managed,and there is an urgent need to evaluate the effects of such management on long-term carbon dynamics.Methods:We assessed the carbon cycling patterns of ecosystems characterized by three typical plantation species(Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.),oak(Cyclobalanopsis glauca(Thunb.)Oerst.),and pine(Pinus massoniana Lamb.))in Lishui,southern China,by using an integrated biosphere simulator(IBIS)tuned with localized parameters.Then,we used the state-and-transition simulation model(STSM)to study the effects of active forest management(AFM)on carbon storage by combining forest disturbance history and carbon cycle regimes.Results:1)The carbon stock of the oak plantation was lower at an early age(<50 years)but higher at an advanced age(>50 years)than that of the Chinese fir and pine plantations.2)The carbon densities of the pine and Chinese fir plantations peaked at 70 years(223.36 Mg⋅ha^(‒1))and 64 years(232.04 Mg⋅ha^(‒1)),respectively,while the carbon density in the oak plantation continued increasing(>100 years).3)From 1989 to 2019,the total carbon pools of the three plantation ecosystems followed an upward trend(an annual increase of 0.16–0.22 Tg C),with the largest proportional increase in the aboveground biomass carbon pool.4)AFM increased the recovery of carbon storage after 1996 and 2009 in the pine and Chinese fir plantations,respectively,but did not result in higher growth in the oak plantation.5)The proposed harvest planning is reasonable and conducive to maximizing the carbon sequestration capacity of the forest.Conclusions:This study provides an example of a carbon cycle coupling model that is potentially suitable for simulating China's plantation forest ecosystems and supporting carbon accounting to monitor peak CO_(2)emissions and reach carbon neutrality.展开更多
Background: Forest ecosystems are increasingly seen as multi-functional production systems, which should provide, besides timber and economic benefits, also other ecosystem services related to biological diversity, r...Background: Forest ecosystems are increasingly seen as multi-functional production systems, which should provide, besides timber and economic benefits, also other ecosystem services related to biological diversity, recreational uses and environmental functions of forests. This study analyzed the performance of even-aged rotation forest management (RFM), continuous cover forestry (CCF) and any-aged forestry (AAF) in the production of ecosystem services. AAF allows both even-aged and uneven-aged management schedules. The ecosystem services included in the analyses were net present value, volume of harvested timber, cowberry and bilberry yields, scenic value of the forest, carbon balance and suitability of the forest to Siberian jay. Methods: Data envelopment analysis was used to derive numerical efficiency ratios for the three management systems. Efficiency ratio is the sum of weighted outputs (ecosystem services) divided by the sum of weighted inputs. The linear programing model proposed by Charnes, Cooper and Rhodes was used to derive the weights for calculating efficiency scores for the silvicultural systems. Results and conclusions: CCF provided more ecosystem services than RFM, and CCF was more efficient than RFM and AAF in the production of ecosystem services. Multi-objective management provided more ecosystem services (except harvested timber) than single-objective management that maximized economic profitability. The use of low discount rate (resulting in low cutting level and high growing stock volume) led to better supply of most ecosystems services than the use of high discount rate. RFM where NPV was maximized with high discount rate led to particularly poor provision of most ecosystem services. In CCF the provision of ecosystem services was less sensitive to changes in discount rate and management objective than in RFM.展开更多
We used a goal programming technique to determine the optimal harvest volume for the Iranian Caspian forest. We collected data including volume, growth, wood price at forest roadside, and variable harvesting costs. Th...We used a goal programming technique to determine the optimal harvest volume for the Iranian Caspian forest. We collected data including volume, growth, wood price at forest roadside, and variable harvesting costs. The allometric method was used to quantify seques- trated carbon. Regression analysis was used to derive growth models. Expected mean price was estimated using wood price and variable harvesting costs. Questionnaire was used to determine the constraints and the equation coefficients of the goal programming model. The optimal volume was determined using the goal programming method according to multipurpose forest management. LINGO software was used for analysis. Results indicated that the optimum volumes of species were 250.25 m3.ha-1 for beech, 59 m3.ha-1 for hornbeam, 73 m3.ha-1 for oak, 41 m3.ha-1 for alder, and 32 m3.ha-1 for other species. The total optimum volume is 455.25 m3.ha-1.展开更多
Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest ...Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest managers are thus challenged by the need to define strategies that may protect the soil while addressing the demand for other ecosystem services. Our emphasis is on the development of an approach to assess the impact of silvicultural practices and forest management models on soil erosion risks under climate change. Specifically, we consider the annual variation of the cover-management factor(C) in the Revised Universal Soil Loss Equation over a range of alternative forest management models to estimate the corresponding annual soil losses, under both current and changing climate conditions. We report and discuss results of an application of this approach to a forest area in Northwestern Portugal where erosion control is the most relevant water-related ecosystem service.Results: Local climate change scenarios will contribute to water erosion processes, mostly by rainfall erosivity increase.Different forest management models provide varying levels of soil protection by trees, resulting in distinct soil loss potential.Conclusions: Results confirm the suitability of the proposed approach to address soil erosion concerns in forest management planning. This approach may help foresters assess management models and the corresponding silvicultural practices according to the water-related services they provide.展开更多
Precautions against forest fires,a significant element in the prevention and reduction of natural disasters in China,are very important to the development of public emergency systems,as well as to the safety of forest...Precautions against forest fires,a significant element in the prevention and reduction of natural disasters in China,are very important to the development of public emergency systems,as well as to the safety of forest resources,ecology,people’s lives and properties.The USA has extensive experience in forest fire management,which has been widely accepted and used by other countries.The precautions taken by China and the USA to prevent forest fires have been compared in a great number of previous studies.However,most of the studies have focused merely on fire extinguishing technologies and management methods;they have lacked a comparative study on the legal aspects of management.This paper will consider five distinct aspects related to forest fire management between China and the USA and will analyze the similarities and differences as well as study other features to facilitate work related to precautions against forest fires in China.展开更多
Background: The quantitative impact of forest management on forests' wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation len...Background: The quantitative impact of forest management on forests' wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation length have seldom been directly quantified on landscape scale. Methods: Two sites of similar fertility but subject to contrasted forest management were studied with detailed inventories: one in Germany, the other in Romania, and compared with the respective national forest inventories. In Romania, regulations impose very long rotations, low thinnings and a period of no-cut before harvest. In contrast, tending and thinnings are frequent and intense in Germany. Harvests start much earlier and must avoid clear cutting but maintain a permanent forest cover with natural regeneration. While Germany has an average annual wood increment representative for Central Europe, Romania represents the average for Eastern Europe. Results: The lack of tending and thinning in the Romanian site resulted in twice as many trees per hectare as in the German site for the same age. The productivity in Romanian production forests was 20 % lower than in Germany despite a similar fertility. The results were supported by the data from the national forest inventory of each country, which confirmed that the same differential exists at country scale. Furthermore, provided the difference in rotation length, two crops are harvested in Germany when only one is harvested in Romania. The losses of production due to a lower level of management in Romania where estimated to reach 12.8 million m3.y-1 in regular mountain production forests, and to 15 million m3.y-1 if managed protection forest is included. Conclusions: The productivity of Picea and Fagus mountain forests in Romania is severely depressed by the lack of tending and thinning, by overly long rotations and the existence of a 25-years no-cut period prior to harvest. The average standing volume in Germany was 50 % lower than in Romania, but the higher harvesting rate resulted in more than doubling wood production. Considering the mitigation effects of climate change by forests, it emerges that the increase in standing volume of forests in Romania is smaller than the additional harvest in Germany which serves fossil fuel substitution.展开更多
This paper demonstrates a Geographic Information Systems (GIS) procedure of classifying and mapping forest management category in Baihe Forestry Burea, Jilin Province, China. Within the study area, Baihe Forestry Bu...This paper demonstrates a Geographic Information Systems (GIS) procedure of classifying and mapping forest management category in Baihe Forestry Burea, Jilin Province, China. Within the study area, Baihe Forestry Bureau land was classified into a two-hierarchy system. The top-level class included the non-forest and forest. Over 96% of land area is forest in the study area, which was further divided into key ecological service forest (KES), general ecological service forest (GES), and commodity forest (COM). COM covered 45.0% of the total land area and was the major forest management type in Baihe Forest Bureau. KES and GES accounted for 21.2% and 29.9% of the total land area, respectively. The forest management zones designed with GIS in this study were then compared with the forest management zones established using the hand draw by the local agency. There were obvious differences between the two products. It suggested that the differences had some to do with the data sources, basic unit and mapping procedures. It also suggested that the GIS method was a useful tool in integrating forest inventory data and other data for classifying and mapping forest zones to meet the needs of the classified forest management system.展开更多
Uncontrolled harvesting of non-timber forest products (NTFPs) poses a serious risk of extermination to several of these species in Nigeria. Yet, there is a paucity of information on the distribution, population stat...Uncontrolled harvesting of non-timber forest products (NTFPs) poses a serious risk of extermination to several of these species in Nigeria. Yet, there is a paucity of information on the distribution, population status and sustainable management of NTFPs in most of the tropical lowland rainforests. We, therefore, assessed the population, distribution and threats to sustainable management of NTFPs within the tropical lowland rainforests of Omo and Shasha Forest Reserves, south western Nigeria. Data were obtained through inventory surveys on five top priority species including: bush mango (Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill), African walnut (Tetracarpidium conophorum (Mull. Arg.) Hutch. & Dalziel syn. Plukenetia conophora), chew-stick (Massularia acuminata (G. Don) Bullock), fever bark (Annickia chlorantha Setten & P.J.Maas syn. Enantia chloranta) and bush pepper (Piper guineense Schumach. & Thonn.). Purposive and stratified random sampling techniques were used for the inventory. Each forest reserve was stratified into three, viz: less disturbed natural forest (for areas that have been rested for at least ten years), recently disturbed natural forest (for areas that have suffered one form of human perturbation or the other in the last five years), and plantation forest (for areas carrying forest plantation). Data were collected from eighteen 10 m × 500 m belt transects located in the above strata. The species were generally fewer in both plantation and recently disturbed natural forest than the less disturbed natural forest, suggesting that forest disturbances (habitat modification) for other uses may have an effect on the occurrence and densities of the NTFPs. Exceptions to this trend were found for P. guineense and T. conophorum, which were fairly common in both plantation and recently disturbed natural forest. Among three tree NTFP species (i.e. I. gabonensis, M. acuminata and A. chlorantha), only I. gabonensis showed a significant difference in overall DBH size classes for both reserves (t=?2.404; df =21; p=0.026). Three tree NTFP species in both reserves further showed differences from the regular patterns of distribution of trees. The fairly regular reverse J-shaped size class distribution observed for M. acuminata in the study sites, however, suggests a recuperating population. In general, destructive harvesting of species, logging operations, low population size, narrow distribution ranges and habitat degradation are the major threats to the population of NTFPs in the study area. The implications of our findings for sustainable management of NTFPs in the study area are discussed and recommendations are made for a feasible approach towards enhancing the status of the species.展开更多
Community forest management helps in mitigating deforestation and forest degradation by addressing the negative aspects of rural livelihoods such as poverty and social exclusion.It is important in regulating global cl...Community forest management helps in mitigating deforestation and forest degradation by addressing the negative aspects of rural livelihoods such as poverty and social exclusion.It is important in regulating global climate by encouraging sequestration of carbon in shoots,roots and soils.We studied the status of community forest management,forest resource harvest and carbon stocks in two community forests of the mid hill region of central and western Nepal.The study was based on primary and secondary data collected through carbon stock measurement from field visits and allometric equations,household surveys,focus group discussions,key informant interviews,and review of past studies.Socioeconomic variables such as gender,age group,livestock and landholding status were related to resource utilization,conservation,and management of community forest.Forest resources such as timber,firewood,fodder and leaf litter were harvested in sustainable ways.People were involved in forest thinning,co-management meetings,guarding and planting trees for forest conservation and management.Density and carbon stock of trees increased gradually in comparison to a previous study.We recommend further research on other community forests for more accurate and better results.展开更多
Environmental education (EE) is a vital dimension of modern day acumen that portends a great promise in solving the myriad environmental resource management challenges at global, regional and local levels. A study w...Environmental education (EE) is a vital dimension of modern day acumen that portends a great promise in solving the myriad environmental resource management challenges at global, regional and local levels. A study was carried out in 18 locations in the Nandi North, Nandi South and Nandi Hills districts of Kenya, which cover the Nandi Hills and Nandi Forests in Nandi County, major water catchments for Lake Victoria. A mixed methodological approach, incorporating both qualitative and quantitative data obtained from focus group discussions, key informant interviews, household survey and observations was embraced in data collection and analysis. The study reveals that there are several strategies that have been adopted by the local population and institutions involved in the management of the Nandi Hills Forests (NHFs) and that these strategies have contributed to an improvement in the perceptions of the local population in terms of the importance of environmental management of the forests. This paper highlights EE as a vehicle for ensur- ing a sustainable management of the Nandi Hills Forests. As such, it illuminates the great potential that lies in sustainably managing the NHFs by integrating formal and informal EE approaches. It further points out the functional gaps in the management of NHFs and proposes best-practices that could be adopted and/or domesticated in NHFs management regimes.展开更多
This paper examines the role and effectiveness of locacal institutions in the management of forest biodiversity in New Dabaga-Ulongambi Forest Reserve, Tanzania. Data were obtained through questionnaires, interviews, ...This paper examines the role and effectiveness of locacal institutions in the management of forest biodiversity in New Dabaga-Ulongambi Forest Reserve, Tanzania. Data were obtained through questionnaires, interviews, focus group discussions, participatory rural appraisal and field observations. The study revealed that the most remarkable local institutions connected to forest biodiversity management include: Village Natural Resources Man- agement Committee (92%), tree nursery group (79.4%), beekeep- ing groups (61.1%), fish fanning (43.3%), livestock rearing group (33.9%). Main activities carried out by local institutions which directly contribute to the sustainability Of forest reserve include: forest patrols, fire extinguish, preparation of fire breaks, plant- ing of trees along the forest boundaries, creation of awareness, arresting of forest defaulters, participation in income generation activities. For the purpose of realization that local communities are capable of managing forest biodiversity through their traditional institutions, the policy should provide tangible opportunity for local communities to meet their needs as they manage the forests.展开更多
An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis sugges...An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.展开更多
文摘This study focused on identifying factors affecting the benefits of Participatory Forestry Management (PFM) income generating activities in Upper Imenti Forest and whether they are dependent on status of participation in forest management through membership of Community Forest Association (CFA) or not. Cross-sectional survey research design was applied for collecting quantitative data using a semi-structured questionnaire administered to 384 households stratified on the basis of PFM participation status. Qualitative data was collected through focused group discussions using a checklist and key informant interviews using an interview schedule. Using Statistical Package for Social Sciences version 25, Binomial regression with Wald Chi-square was analyzed to identify factors perceived to be significantly influencing benefits for PFM participants and Pearson Chi-square to compare factors perceived to be affecting PFM and non-PFM participants. CFA members participation in PFM was significantly and positively affected by benefits of PFM income generating activities and forest products accessed in the forest. Benefits linked to Plantation Establishment for Livelihood Improvement System (PELIS) for CFA members were significantly reduced by enforcement of moratorium policy since February 2018, diseases and pests, poor PELIS guideline adherence and animal damage. Benefits related to state forest access for firewood by the CFA members were negatively influenced by the moratorium policy. Diseases and pests affected benefits associated with bee keeping significantly. Comparing factors under different PFM participation status, crop production was significantly affected by policy changes, pest and diseases, animal damage and PELIS guideline adherence for CFA members than for Non-CFA members. Policy changes also affected the CFA members significantly in firewood collection and access to fodder in the state forest than the Non-CFA members. Hence, sustainable community participation in Upper Imenti Forest management requires: increasing PFM benefits, addressing factors reducing benefits and enhancing active participation of CFA members in PFM related decision-making processes.
基金supported by the National Institute for Forest Products Innovation(NIFPI)Australia(Project No.NS034)。
文摘Bushfires are devastating to forest managers,owners,residents,and the natural environment.Recent tech-nological advances indicate a potential for faster response times in terms of detecting and suppressing fires.However,to date,all these technologies have been applied in isola-tion.This paper introduces the latest fire detection and sup-pression technologies from ground to space.An operations research method was used to assemble these technologies into a theoretical framework for fire detection and suppres-sion.The framework harnesses the advantages of satellite-based,drone,sensor,and human reporting technologies as well as image processing and artificial intelligence machine learning.The study concludes that,if a system is designed to maximise the use of available technologies and carefully adopts them through complementary arrangements,a fire detection and resource suppression system can achieve the ultimate aim:to reduce the risk of fire hazards and the dam-age they may cause.
基金supported by the National Natural Science Foundation of China(Grant Nos.31988102 and 42141006)。
文摘Background: The loss of soil organic carbon(SOC) following conversion of natural forests to managed plantations has been widely reported. However, how different SOC fractions and microbial necromass C(MNC) respond to forest management practices remains unclear.Methods: We sampled 0–10 cm mineral soil from three different management plantations and one protected forest in Guangxi, Southern China, to explore how forest management practices affect SOC through changing mineralassociated C(MAOC) and particulate organic C(POC), as well as fungal and bacterial necromass C.Results: Compared with the protected forest, SOC and POC in the abandoned, mixed and Eucalyptus plantations significantly decreased, but MAOC showed no significant change, indicating that the loss of SOC was mainly from decreased POC under forest management. Forest management also significantly reduced root biomass, soil extractable organic C, MNC, and total microbial biomass(measured by phospholipid fatty acid), but increased fungi-to-bacteria ratio(F:B) and soil peroxidase activity. Moreover, POC was positively correlated with root biomass, total microbial biomass and MNC, and negatively with F:B and peroxidase activity. These results suggested that root input and microbial properties together regulated soil POC dynamics during forest management.Conclusion: Overall, this study indicates that forest management intervention significantly decreases SOC by reducing POC in Guangxi, Southern China, and suggests that forest protection can help to sequester more soil C in forest ecosystems.
文摘Natural regeneration is the basis of a dynamic and demographic balance of plant populations. The objective of this study was to assess the natural regeneration potential of woody species along secondary roads post-logging abandoned since 2008 and 2018. In the two Annual Allowable Cuts (AAC 2008 and AAC 2018), 24 regenerating sub-plots (i.e. 12 sub-plots for AAC 2008 and 12 sub-plots for AAC 2018) with a unit area of 5 m × 5 m were delimited with a total area of 0.06 ha (i.e. 0.03 ha for each AAC). The abundance and diversity of woody species were respectively inventoried and estimated. Two estimators of the specific richness were used to estimate the floristic diversity of each Annual Allowable Cuts (AAC). The results reveal globally 88 woody species in the AAC 2008 and 241 woody species in the AAC 2018, with respective average densities of 2933 stem/ha and 8033 stem/ha. There was a very highly significant difference between the mean densities of the two AAC (Kruskal-Wallis test;H = 2.36, p-value < 0.000). The results also highlight a great diversity and a relatively high abundance of woody species in the 2018 AAC compared to the 2008 AAC. Also, the spatial structuring of the sub-plots on the basis of Principal Component Analysis (PCA) demonstrates that the floristic composition of the two AAC is globally different. The study suggests silvicultural interventions and the long-term assessment of regenerating woody species along abandoned secondary roads in order to guarantee the sustainable management of their population.
基金This work was supported by Provincial Key Technologies R and D program of Heilongjiang (GC02B608)
文摘The history, current situation, and development trend of GIS (Geographic Information System) applied in the forest resources management were discussed in this paper. On the basis of geographic spatial characteristics of forest resources data, a component geographic information system (ComGIS) was developed for forest resources management. The system embeds a GIS ActiveX control MapObjects (Inc. ESRI) on Visual C++ platform. System design, data organization and achieving way were studied and expatiated by taking Xigangzi Forestry Centre as study object. The system has many useful functions,, such as adding and display of various map layers, zoom of map by wheeling mouse, attribute and spatial data querying, map auto roaming, features rendering based on the spatial trait of data, label controlling through attribute data band with vector graph, as well as output of 'Column chart' for showing the result of statistics. At the same time, parts of source codes are attached.
基金Under the auspices of International Science and Technology Cooperation Project(No.2010DFA22480)Major State Basic Research Development Program of China(No.2010CB833503)
文摘It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.
基金carried out in the framework of the EBOR-project funded by the Academy of Finland(Proj.No.276255)
文摘The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifying forest utilisation, and in certain areas due to increasing natural disturbances, boreal forest age-class structures have changed rapidly, so that the proportion of old forest has substantially declined, while that of young post-harvest and post-natural-disturbance forest proportions have increased. In the future, with a warming climate in certain boreal regions, this trend may further be enhanced due to an increase in natural disturbances and large-scale use of forest biomass to replace fossil-based fuels and products.The major drivers of change of forest age class distributions and structures include the use of clearcut shortrotation harvesting, more frequent and severe natural disturbances due to climate warming in certain regions. The decline in old forest area, and increase in managed young forest lacking natural post-disturbance structural legacies,represent a major transformation in the ecological conditions of the boreal forest beyond historical limits of variability.This may introduce a threat to biodiversity, ecosystem resilience and long-term adaptive capacity of the forest ecosystem.To safeguard boreal forest biodiversity and ecosystem functioning, and to maintain the multiple services provided to societies by this forest biome, it is pivotal to maintain an adequate share and the ecological qualities of young postdisturbance stages, along with mature forest stages with old-growth characteristics. This requires management for natural post-disturbance legacy structures, and innovative use of diverse uneven-aged and continuous cover management approaches to maintain critical late-successional forest structures in landscapes.
文摘Based on an analysis of the characteristics of the Forest Resources Management Information System of each development phase, and consideration of the technical trend in Geographic Information System (GIS) in the Internet Age, this paper explores the importance and the feasibility of setting up Forest Resources Management Information System based on the WEBGIS. At the same time, based on the experience of our study, the paper explores the function, structure and method of developing the Forest Resources Management Information System based on WEBGIS. With the technology of WEBGIS, the Forest Resources Management Information System with data from Huoditang Farm was set up, which makes a great impact on forest resources management. So setting up the Forest Resources Management Information System based on WEBGIS is a trend of forest resources management. In the course of setting up this system, we must pay attention to following questions: 1) unify data standard and information encoding; 2) change mind.
基金This work was jointly funded by the following grants:the National Natural Science Foundation of China(31971577,31670552)the DOD ESTCP Program(RC_201703)the PAPD(Priority Academic Program Development)of Jiangsu Provincial Universities(2017).
文摘Background:China has committed to achieving peak CO_(2)emissions before 2030 and carbon neutrality before 2060;therefore,accelerated efforts are needed to better understand carbon accounting in industry and energy fields as well as terrestrial ecosystems.The carbon sink capacity of plantation forests contributes to the mitigation of climate change.Plantation forests throughout the world are intensively managed,and there is an urgent need to evaluate the effects of such management on long-term carbon dynamics.Methods:We assessed the carbon cycling patterns of ecosystems characterized by three typical plantation species(Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.),oak(Cyclobalanopsis glauca(Thunb.)Oerst.),and pine(Pinus massoniana Lamb.))in Lishui,southern China,by using an integrated biosphere simulator(IBIS)tuned with localized parameters.Then,we used the state-and-transition simulation model(STSM)to study the effects of active forest management(AFM)on carbon storage by combining forest disturbance history and carbon cycle regimes.Results:1)The carbon stock of the oak plantation was lower at an early age(<50 years)but higher at an advanced age(>50 years)than that of the Chinese fir and pine plantations.2)The carbon densities of the pine and Chinese fir plantations peaked at 70 years(223.36 Mg⋅ha^(‒1))and 64 years(232.04 Mg⋅ha^(‒1)),respectively,while the carbon density in the oak plantation continued increasing(>100 years).3)From 1989 to 2019,the total carbon pools of the three plantation ecosystems followed an upward trend(an annual increase of 0.16–0.22 Tg C),with the largest proportional increase in the aboveground biomass carbon pool.4)AFM increased the recovery of carbon storage after 1996 and 2009 in the pine and Chinese fir plantations,respectively,but did not result in higher growth in the oak plantation.5)The proposed harvest planning is reasonable and conducive to maximizing the carbon sequestration capacity of the forest.Conclusions:This study provides an example of a carbon cycle coupling model that is potentially suitable for simulating China's plantation forest ecosystems and supporting carbon accounting to monitor peak CO_(2)emissions and reach carbon neutrality.
文摘Background: Forest ecosystems are increasingly seen as multi-functional production systems, which should provide, besides timber and economic benefits, also other ecosystem services related to biological diversity, recreational uses and environmental functions of forests. This study analyzed the performance of even-aged rotation forest management (RFM), continuous cover forestry (CCF) and any-aged forestry (AAF) in the production of ecosystem services. AAF allows both even-aged and uneven-aged management schedules. The ecosystem services included in the analyses were net present value, volume of harvested timber, cowberry and bilberry yields, scenic value of the forest, carbon balance and suitability of the forest to Siberian jay. Methods: Data envelopment analysis was used to derive numerical efficiency ratios for the three management systems. Efficiency ratio is the sum of weighted outputs (ecosystem services) divided by the sum of weighted inputs. The linear programing model proposed by Charnes, Cooper and Rhodes was used to derive the weights for calculating efficiency scores for the silvicultural systems. Results and conclusions: CCF provided more ecosystem services than RFM, and CCF was more efficient than RFM and AAF in the production of ecosystem services. Multi-objective management provided more ecosystem services (except harvested timber) than single-objective management that maximized economic profitability. The use of low discount rate (resulting in low cutting level and high growing stock volume) led to better supply of most ecosystems services than the use of high discount rate. RFM where NPV was maximized with high discount rate led to particularly poor provision of most ecosystem services. In CCF the provision of ecosystem services was less sensitive to changes in discount rate and management objective than in RFM.
文摘We used a goal programming technique to determine the optimal harvest volume for the Iranian Caspian forest. We collected data including volume, growth, wood price at forest roadside, and variable harvesting costs. The allometric method was used to quantify seques- trated carbon. Regression analysis was used to derive growth models. Expected mean price was estimated using wood price and variable harvesting costs. Questionnaire was used to determine the constraints and the equation coefficients of the goal programming model. The optimal volume was determined using the goal programming method according to multipurpose forest management. LINGO software was used for analysis. Results indicated that the optimum volumes of species were 250.25 m3.ha-1 for beech, 59 m3.ha-1 for hornbeam, 73 m3.ha-1 for oak, 41 m3.ha-1 for alder, and 32 m3.ha-1 for other species. The total optimum volume is 455.25 m3.ha-1.
基金ALTERFOR project,“Alternative models and robust decision-making for future forest management”,H2020-ISIB-2015-2/grant agreement No. 676754,funded by European Union Seventh Framework ProgrammeSUFORUN project,‘Models and decision SUpport tools for integrated FOrest policy development under global change and associated Risk and UNcertainty’ funded by the European Union’s H2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement number 691149+2 种基金BIOECOSYS project,“Forest ecosystem management decision-making methods an integrated bioeconomic approach to sustainability”(LISBOA-01-0145-FEDER-030391,PTDC/ASP-SIL/30391/2017)MedFOR,Master Programme on Mediterranean Forestry and Natural Resources Management (Erasmus+Erasmus Mundus Joint Master Degrees,Project 20171917)Centro de Estudos Florestais,research unit funded by Fundacao para a Ciência e a Tecnologia I.P.(FCT),Portugal within UIDB/00239/2020。
文摘Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest managers are thus challenged by the need to define strategies that may protect the soil while addressing the demand for other ecosystem services. Our emphasis is on the development of an approach to assess the impact of silvicultural practices and forest management models on soil erosion risks under climate change. Specifically, we consider the annual variation of the cover-management factor(C) in the Revised Universal Soil Loss Equation over a range of alternative forest management models to estimate the corresponding annual soil losses, under both current and changing climate conditions. We report and discuss results of an application of this approach to a forest area in Northwestern Portugal where erosion control is the most relevant water-related ecosystem service.Results: Local climate change scenarios will contribute to water erosion processes, mostly by rainfall erosivity increase.Different forest management models provide varying levels of soil protection by trees, resulting in distinct soil loss potential.Conclusions: Results confirm the suitability of the proposed approach to address soil erosion concerns in forest management planning. This approach may help foresters assess management models and the corresponding silvicultural practices according to the water-related services they provide.
基金supported by the State Bureau of Forestry 948 project(2015-4-35)the Fundamental Research Funds for the Central Universities(2572015CA10)National Natural Science Foundation of China(31400551)
文摘Precautions against forest fires,a significant element in the prevention and reduction of natural disasters in China,are very important to the development of public emergency systems,as well as to the safety of forest resources,ecology,people’s lives and properties.The USA has extensive experience in forest fire management,which has been widely accepted and used by other countries.The precautions taken by China and the USA to prevent forest fires have been compared in a great number of previous studies.However,most of the studies have focused merely on fire extinguishing technologies and management methods;they have lacked a comparative study on the legal aspects of management.This paper will consider five distinct aspects related to forest fire management between China and the USA and will analyze the similarities and differences as well as study other features to facilitate work related to precautions against forest fires in China.
基金support by a grant of the Romanian National Authority for Scientific Research,CNCS-UEFISCDI,project number PN-II-ID-PCE-2011-3-0781support by a grant of the Romanian National Authority for Scientific Research,CNCS-UEFISCDI,project number PN-II-RU-TE-2014-4-0017
文摘Background: The quantitative impact of forest management on forests' wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation length have seldom been directly quantified on landscape scale. Methods: Two sites of similar fertility but subject to contrasted forest management were studied with detailed inventories: one in Germany, the other in Romania, and compared with the respective national forest inventories. In Romania, regulations impose very long rotations, low thinnings and a period of no-cut before harvest. In contrast, tending and thinnings are frequent and intense in Germany. Harvests start much earlier and must avoid clear cutting but maintain a permanent forest cover with natural regeneration. While Germany has an average annual wood increment representative for Central Europe, Romania represents the average for Eastern Europe. Results: The lack of tending and thinning in the Romanian site resulted in twice as many trees per hectare as in the German site for the same age. The productivity in Romanian production forests was 20 % lower than in Germany despite a similar fertility. The results were supported by the data from the national forest inventory of each country, which confirmed that the same differential exists at country scale. Furthermore, provided the difference in rotation length, two crops are harvested in Germany when only one is harvested in Romania. The losses of production due to a lower level of management in Romania where estimated to reach 12.8 million m3.y-1 in regular mountain production forests, and to 15 million m3.y-1 if managed protection forest is included. Conclusions: The productivity of Picea and Fagus mountain forests in Romania is severely depressed by the lack of tending and thinning, by overly long rotations and the existence of a 25-years no-cut period prior to harvest. The average standing volume in Germany was 50 % lower than in Romania, but the higher harvesting rate resulted in more than doubling wood production. Considering the mitigation effects of climate change by forests, it emerges that the increase in standing volume of forests in Romania is smaller than the additional harvest in Germany which serves fossil fuel substitution.
基金Foundation project: This research was jointly supported by the National Natural Science Foundation of China (70373044&30470302), China's Ministry of Science and Technology (04EFN216600328), and Northeast Rejuvenation Program of the Chinese Academy of Sciences.
文摘This paper demonstrates a Geographic Information Systems (GIS) procedure of classifying and mapping forest management category in Baihe Forestry Burea, Jilin Province, China. Within the study area, Baihe Forestry Bureau land was classified into a two-hierarchy system. The top-level class included the non-forest and forest. Over 96% of land area is forest in the study area, which was further divided into key ecological service forest (KES), general ecological service forest (GES), and commodity forest (COM). COM covered 45.0% of the total land area and was the major forest management type in Baihe Forest Bureau. KES and GES accounted for 21.2% and 29.9% of the total land area, respectively. The forest management zones designed with GIS in this study were then compared with the forest management zones established using the hand draw by the local agency. There were obvious differences between the two products. It suggested that the differences had some to do with the data sources, basic unit and mapping procedures. It also suggested that the GIS method was a useful tool in integrating forest inventory data and other data for classifying and mapping forest zones to meet the needs of the classified forest management system.
文摘Uncontrolled harvesting of non-timber forest products (NTFPs) poses a serious risk of extermination to several of these species in Nigeria. Yet, there is a paucity of information on the distribution, population status and sustainable management of NTFPs in most of the tropical lowland rainforests. We, therefore, assessed the population, distribution and threats to sustainable management of NTFPs within the tropical lowland rainforests of Omo and Shasha Forest Reserves, south western Nigeria. Data were obtained through inventory surveys on five top priority species including: bush mango (Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill), African walnut (Tetracarpidium conophorum (Mull. Arg.) Hutch. & Dalziel syn. Plukenetia conophora), chew-stick (Massularia acuminata (G. Don) Bullock), fever bark (Annickia chlorantha Setten & P.J.Maas syn. Enantia chloranta) and bush pepper (Piper guineense Schumach. & Thonn.). Purposive and stratified random sampling techniques were used for the inventory. Each forest reserve was stratified into three, viz: less disturbed natural forest (for areas that have been rested for at least ten years), recently disturbed natural forest (for areas that have suffered one form of human perturbation or the other in the last five years), and plantation forest (for areas carrying forest plantation). Data were collected from eighteen 10 m × 500 m belt transects located in the above strata. The species were generally fewer in both plantation and recently disturbed natural forest than the less disturbed natural forest, suggesting that forest disturbances (habitat modification) for other uses may have an effect on the occurrence and densities of the NTFPs. Exceptions to this trend were found for P. guineense and T. conophorum, which were fairly common in both plantation and recently disturbed natural forest. Among three tree NTFP species (i.e. I. gabonensis, M. acuminata and A. chlorantha), only I. gabonensis showed a significant difference in overall DBH size classes for both reserves (t=?2.404; df =21; p=0.026). Three tree NTFP species in both reserves further showed differences from the regular patterns of distribution of trees. The fairly regular reverse J-shaped size class distribution observed for M. acuminata in the study sites, however, suggests a recuperating population. In general, destructive harvesting of species, logging operations, low population size, narrow distribution ranges and habitat degradation are the major threats to the population of NTFPs in the study area. The implications of our findings for sustainable management of NTFPs in the study area are discussed and recommendations are made for a feasible approach towards enhancing the status of the species.
基金supported by the University Grants Commission-NepalInstitute of Science and Technology+1 种基金Central Department of Environmental ScienceMinistry of Science Technology and Environment
文摘Community forest management helps in mitigating deforestation and forest degradation by addressing the negative aspects of rural livelihoods such as poverty and social exclusion.It is important in regulating global climate by encouraging sequestration of carbon in shoots,roots and soils.We studied the status of community forest management,forest resource harvest and carbon stocks in two community forests of the mid hill region of central and western Nepal.The study was based on primary and secondary data collected through carbon stock measurement from field visits and allometric equations,household surveys,focus group discussions,key informant interviews,and review of past studies.Socioeconomic variables such as gender,age group,livestock and landholding status were related to resource utilization,conservation,and management of community forest.Forest resources such as timber,firewood,fodder and leaf litter were harvested in sustainable ways.People were involved in forest thinning,co-management meetings,guarding and planting trees for forest conservation and management.Density and carbon stock of trees increased gradually in comparison to a previous study.We recommend further research on other community forests for more accurate and better results.
文摘Environmental education (EE) is a vital dimension of modern day acumen that portends a great promise in solving the myriad environmental resource management challenges at global, regional and local levels. A study was carried out in 18 locations in the Nandi North, Nandi South and Nandi Hills districts of Kenya, which cover the Nandi Hills and Nandi Forests in Nandi County, major water catchments for Lake Victoria. A mixed methodological approach, incorporating both qualitative and quantitative data obtained from focus group discussions, key informant interviews, household survey and observations was embraced in data collection and analysis. The study reveals that there are several strategies that have been adopted by the local population and institutions involved in the management of the Nandi Hills Forests (NHFs) and that these strategies have contributed to an improvement in the perceptions of the local population in terms of the importance of environmental management of the forests. This paper highlights EE as a vehicle for ensur- ing a sustainable management of the Nandi Hills Forests. As such, it illuminates the great potential that lies in sustainably managing the NHFs by integrating formal and informal EE approaches. It further points out the functional gaps in the management of NHFs and proposes best-practices that could be adopted and/or domesticated in NHFs management regimes.
基金TAFORI and Forestry and Beekeeping Division through Participatory Forest Management (PFM)grant for funding this study
文摘This paper examines the role and effectiveness of locacal institutions in the management of forest biodiversity in New Dabaga-Ulongambi Forest Reserve, Tanzania. Data were obtained through questionnaires, interviews, focus group discussions, participatory rural appraisal and field observations. The study revealed that the most remarkable local institutions connected to forest biodiversity management include: Village Natural Resources Man- agement Committee (92%), tree nursery group (79.4%), beekeep- ing groups (61.1%), fish fanning (43.3%), livestock rearing group (33.9%). Main activities carried out by local institutions which directly contribute to the sustainability Of forest reserve include: forest patrols, fire extinguish, preparation of fire breaks, plant- ing of trees along the forest boundaries, creation of awareness, arresting of forest defaulters, participation in income generation activities. For the purpose of realization that local communities are capable of managing forest biodiversity through their traditional institutions, the policy should provide tangible opportunity for local communities to meet their needs as they manage the forests.
基金supported by the Sino-German Postdoc Scholarship Program of the China Scholarship Council(CSC)the German Academic Exchange Service(DAAD)+4 种基金supported in part by the National Natural Science Foundation of China(Nos.32071541,41971071)the Ministry of Science and Technology of China(Nos.2021FY100200,2021FY100702,2023YFF0805802)the Youth Innovation Promotion Association,CAS(No.2021392)the International Partnership Program,CAS(No.151853KYSB20190027)the“Climate Change Research Initiative of the Bavarian National Parks”funded by the Bavarian State Ministry of the Environment and Consumer Protection.
文摘An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.