China has experienced rapid urbanizations with dramatic land cover changes since 1978. Forest loss is one of land cover changes, and it induces various eco-environmental degradation issues. As one of China’s hotspot ...China has experienced rapid urbanizations with dramatic land cover changes since 1978. Forest loss is one of land cover changes, and it induces various eco-environmental degradation issues. As one of China’s hotspot regions, the Guangdong-Hong KongMacao Greater Bay Area(GBA) has undergone a dramatic urban expansion. To better understand forest dynamics and protect forest ecosystem, revealing the processes, patterns and underlying drivers of forest loss is essential. This study focused on the spatiotemporal evolution and potential driving factors of forest loss in the GBA at regional and city level. The Landsat time-series images from 1987 to2017 were used to derive forest, and landscape metrics and geographic information system(GIS) were applied to implement further spatial analysis. The results showed that: 1) 14.86% of the total urban growth area of the GBA was obtained from the forest loss in1987–2017;meanwhile, the forest loss area of the GBA reached 4040.6 km2, of which 25.60%(1034.42 km2) was converted to urban land;2) the percentages of forest loss to urban land in Dongguan(19.14%), Guangzhou(18.35%) and Shenzhen(15.81%) were higher than those in other cities;3) the forest became increasingly fragmented from 1987–2007, and then the fragmentation decreased from2007 to 2017);4) the landscape responses to forest changes varied with the scale;and 5) some forest loss to urban regions moved from low-elevation and gentle-slope terrains to higher-elevation and steep-slope terrains over time, especially in Shenzhen and Hong Kong.Urbanization and industrialization greatly drove forest loss and fragmentation, and, notably, hillside urban land expansion may have contributed to hillside forest loss. The findings will help policy makers in maintaining the stability of forest ecosystems, and provide some new insights into forest management and conservation.展开更多
Fire-induced forest loss has substantially increased worldwide over the last decade.In China,the connection between forest loss and frequent fi res on a national scale remains largely unexplored.In this study,we used ...Fire-induced forest loss has substantially increased worldwide over the last decade.In China,the connection between forest loss and frequent fi res on a national scale remains largely unexplored.In this study,we used a data set for a time-series of forest loss from the Global Forest Watch and for a MODIS-derived burned area for 2003–2015 to ascertain variations in forest loss and to explore its relationship with forest fi res(represented by burned areas)at the country-and forest-zone levels.We quantifi ed trends in forest loss during 2003–2015 using linear regression analysis and assessed the relation between forest loss and burned areas using Spearman’s correlation.Forest loss increased signifi cantly(264.8 km 2 a−1;R 2=0.54,p<0.01)throughout China,with an average annual increase of 11.4%during 2003–2015.However,the forest loss trend had extensive spatial heterogeneity.Forest loss increased mainly in the subtropical evergreen broadleaf forest zone(315.0 km 2 a−1;R 2=0.69,p<0.01)and tropical rainforest zone(38.8 km 2 a−1;R 2=0.66,p<0.01),but the loss of forest decreased in the cold temperate deciduous coniferous forest zone(−70.8 km 2 year−1;R 2=0.75,p<0.01)and the temperate deciduous mixed broadleaf and coniferous forest zone(−14.4 km 2 a−1;R 2=0.45,p<0.05).We found that 1.0%of China’s area had a signifi cant positive correlation(r≥0.55,p<0.05)with burned areas and 0.3%had a signifi cant negative correlation(r≤−0.55,p<0.05).In particular,forest loss had a signifi cant positive relationship with the burned area in the cold temperate deciduous coniferous forest zone(16.9% of the lands)and the subtropical evergreen broadleaf forest zone(7.8%).These results provide a basis for future predictions of fi re-induced forest loss in China.展开更多
Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest los...Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm^2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm^2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.展开更多
After forest fire, it is very needed to locate fire position and assess the loss of forest resources. In this paper, a method of burned forest assessment with satellite remote sensing data and over-laying techniques i...After forest fire, it is very needed to locate fire position and assess the loss of forest resources. In this paper, a method of burned forest assessment with satellite remote sensing data and over-laying techniques is discussed and used in the assessment of the burned forest in Malin Forest Farm after the large forest fire of May, 1987.展开更多
Forest ecosystems are vital not only for the ecosystem and biogeochemical processes, but also for the livelihood of forest dependent communities for which its continual existence is a necessity. This study explored th...Forest ecosystems are vital not only for the ecosystem and biogeochemical processes, but also for the livelihood of forest dependent communities for which its continual existence is a necessity. This study explored the pattern of forest use in the hinterlands of the Niger Delta and sought to elucidate the drivers of forest loss and how the ownership and management of the forest plots influenced the changes in the forest ecosystem. Ecosystem services reduction and forest loss/degradation were found to be increasing over the years due to crude oil activities, urbanization/developments, population increase, agricultural activities and natural causes like flood. While each factor contributed to forest loss directly and indirectly, and varied from community to community, agricultural activities and population growth were responsible for most of the losses across the landscape. Even though agricultural activities were essential and thrived in the region, sustainable forest (land) uses could have reduced the associated implications of such land uses;but this was however hampered by the farming practises (shifting cultivation) across most of the communities. Lack of proper, effective and sustainable forest management structures, poor individual commitment and monitoring of forest activities were found to encourage forest loss at different spatial scales. Provision of alternative sources of livelihood and ensuring that suitable guidelines on forest abstraction and harvest are enforced across the region, are steps to promoting biodiversity conservation and resource management.展开更多
Background: We explore the factors affecting the optimal plot design (size and type as well as the subsample tree selection strategies within a plot) and their relative importance in defining the optimal plot desig...Background: We explore the factors affecting the optimal plot design (size and type as well as the subsample tree selection strategies within a plot) and their relative importance in defining the optimal plot design in amultipurpose forest inventory. The factors include time used to lay out the plot and to make the tree measurements within the plot, the between-plot variation of each of the variables of interest in the area, and the measurement and model errors for the different variables. Methods: We simulate different plot types and sizes and subsample tree selection strategies on measuredtest areas from North Lapland. The plot types used are fixed-radius, concentric and relascope plots. Weselect the optimal type and size first at plot level using a cost-plus-loss approach and then at cluster level byminimizing the weighted standard error with fixed budget. Results: As relascope plots are ve~/efficient at the plot level for volume and basal area, and fixed-radius plots for stems per ha, the optimal plot type strongly depends on the relative importance of these variables. The concentric plot seems to be a good compromise between these two in many cases. The subsample tree selection strategy was more important in selecting optimal plot than many other factors. In cluster level, the most important factor is the transfer time between plots. Conclusions: While the optimal radius of plots and other parameters were sensitive to the measurement times and other cost factors, the concentric plot type was optimal in almost all studied cases. Subsample tree measurement strategies need further studies, as they were an important cost factor. However, their importance to the precision was not as clear.展开更多
Acid deposition has caused serious damage to the forests of China. In this paper, the quantification theory I is used to calculate the forest volume loss caused by acid disposition in seven provinces of south China. T...Acid deposition has caused serious damage to the forests of China. In this paper, the quantification theory I is used to calculate the forest volume loss caused by acid disposition in seven provinces of south China. The results showed that contribution rates of acid deposition to forest volume loss in seven provinces of south China vary from 24 5% to 37 91%; the volume loss rates range from 7% to 20%. Total volume losses per year are 1 0145×10 6 m 3, of which Zhejiang Province is the greatest, totalling 3 841×10 5 m 3, while Anhui Province is the least, amounting to 1 59×10 4 m 3.展开更多
Forest landscapes are under much pressure globally due to changes in land use and their biodiversity and services are threatened at increasing magnitude especially in the tropics. Biodiversity and ample forest cover s...Forest landscapes are under much pressure globally due to changes in land use and their biodiversity and services are threatened at increasing magnitude especially in the tropics. Biodiversity and ample forest cover still remain in freshwater forest landscapes in the Niger basin of Nigeria, but are declining at astronomical scales across the region. To better understand the changes and modifications going on in the ecosystem at the landscape level, a thirty-year study (1987-2017) was conducted using remotely sensed Landsat imageries. These were processed and used to verify the dynamics in land cover changes and their major drivers. Land use change across the region reduced the forest extent and forest cover (up to 50.2 percent) of the natural ecosystems which served as the habitats for the indigenous species. Sparse vegetation and bare soil/farmlands increased over the study period and were seen as the major indices for modifications and forest loss in the area. Since land use indices such as agricultural activities were seen as one of the major factors of land cover change, sustainable forest use and management practices that accommodate agricultural practices were advocated. While the forest cover and ultimately their biodiversity and conservation prospects reduced following forest loss in the region, efforts should be targeted at conserving the pockets of vegetation seen in the sparsely vegetated zones and also maximize the potentials that the biodiversity in the agro-forested locations offers.展开更多
Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter deco...Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.展开更多
Road prisms, such as cutslopes, fillslopes and road surfaces, can be important contributors of sediment to streams in forested watersheds. In this study rainfall simulations were carried out on cutslopes, fillslopes, ...Road prisms, such as cutslopes, fillslopes and road surfaces, can be important contributors of sediment to streams in forested watersheds. In this study rainfall simulations were carried out on cutslopes, fillslopes, road surfaces and forest grounds in hardwood forests of Lolet and Lat Talar, Iran. Water at intensity of 32.4 mm·h-1 was sprayed from a nozzle onto a square area of 0.48 m2. Runoff was collected by water gauge every 4 min and then runoff and sediment parameters were measured in each plot. Results indicated that on road surfaces, the runoff coefficient was 63.28%. On the cutslopes and fillslopes, the runoff coefficients were 35.14% and 10.23%, respectively. On the forest ground as a control, the runoff coefficient was 5.90%. Runoff volume was 2.73 mL·s^-1 on the road surfaces and 1.52 mL·s^-1 on cutslopes. On fillslopes the runoff volume was 0.44 mL·s^-1 and on the forest ground 0.25 mL·s^-1 The greatest rate of soil loss was found on the cutslope (280.79 g·m-2·h-1). The total soil loss from the cutslopes was two times higher than that from the road surfaces and six times higher than that from the fillslopes. We conclude that cutslopes can be considered the main source of sediments in our study sites, but the function of road surface as a source of runoff generation is more important.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41890854)Basic Research Program of Shenzhen Science and Technology Innovation Committee(No.JCYJ20180507182022554)+3 种基金National Key R&D Program of China(No.2017YFC0506200)National Natural Science Foundation of China(No.7181101150)National Natural Science Foundation of China(No.41901248)Shenzhen Future Industry Development Funding Program(No.201507211219247860)。
文摘China has experienced rapid urbanizations with dramatic land cover changes since 1978. Forest loss is one of land cover changes, and it induces various eco-environmental degradation issues. As one of China’s hotspot regions, the Guangdong-Hong KongMacao Greater Bay Area(GBA) has undergone a dramatic urban expansion. To better understand forest dynamics and protect forest ecosystem, revealing the processes, patterns and underlying drivers of forest loss is essential. This study focused on the spatiotemporal evolution and potential driving factors of forest loss in the GBA at regional and city level. The Landsat time-series images from 1987 to2017 were used to derive forest, and landscape metrics and geographic information system(GIS) were applied to implement further spatial analysis. The results showed that: 1) 14.86% of the total urban growth area of the GBA was obtained from the forest loss in1987–2017;meanwhile, the forest loss area of the GBA reached 4040.6 km2, of which 25.60%(1034.42 km2) was converted to urban land;2) the percentages of forest loss to urban land in Dongguan(19.14%), Guangzhou(18.35%) and Shenzhen(15.81%) were higher than those in other cities;3) the forest became increasingly fragmented from 1987–2007, and then the fragmentation decreased from2007 to 2017);4) the landscape responses to forest changes varied with the scale;and 5) some forest loss to urban regions moved from low-elevation and gentle-slope terrains to higher-elevation and steep-slope terrains over time, especially in Shenzhen and Hong Kong.Urbanization and industrialization greatly drove forest loss and fragmentation, and, notably, hillside urban land expansion may have contributed to hillside forest loss. The findings will help policy makers in maintaining the stability of forest ecosystems, and provide some new insights into forest management and conservation.
基金We are grateful to Zhihua Liu for his constructive comments to improve the manuscript.
文摘Fire-induced forest loss has substantially increased worldwide over the last decade.In China,the connection between forest loss and frequent fi res on a national scale remains largely unexplored.In this study,we used a data set for a time-series of forest loss from the Global Forest Watch and for a MODIS-derived burned area for 2003–2015 to ascertain variations in forest loss and to explore its relationship with forest fi res(represented by burned areas)at the country-and forest-zone levels.We quantifi ed trends in forest loss during 2003–2015 using linear regression analysis and assessed the relation between forest loss and burned areas using Spearman’s correlation.Forest loss increased signifi cantly(264.8 km 2 a−1;R 2=0.54,p<0.01)throughout China,with an average annual increase of 11.4%during 2003–2015.However,the forest loss trend had extensive spatial heterogeneity.Forest loss increased mainly in the subtropical evergreen broadleaf forest zone(315.0 km 2 a−1;R 2=0.69,p<0.01)and tropical rainforest zone(38.8 km 2 a−1;R 2=0.66,p<0.01),but the loss of forest decreased in the cold temperate deciduous coniferous forest zone(−70.8 km 2 year−1;R 2=0.75,p<0.01)and the temperate deciduous mixed broadleaf and coniferous forest zone(−14.4 km 2 a−1;R 2=0.45,p<0.05).We found that 1.0%of China’s area had a signifi cant positive correlation(r≥0.55,p<0.05)with burned areas and 0.3%had a signifi cant negative correlation(r≤−0.55,p<0.05).In particular,forest loss had a signifi cant positive relationship with the burned area in the cold temperate deciduous coniferous forest zone(16.9% of the lands)and the subtropical evergreen broadleaf forest zone(7.8%).These results provide a basis for future predictions of fi re-induced forest loss in China.
基金The Modares Tarbiat University of Iran funded this work
文摘Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus(P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler(LCM) combining with the Soil Water Assessment Tool(SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm^2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm^2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.
文摘After forest fire, it is very needed to locate fire position and assess the loss of forest resources. In this paper, a method of burned forest assessment with satellite remote sensing data and over-laying techniques is discussed and used in the assessment of the burned forest in Malin Forest Farm after the large forest fire of May, 1987.
文摘Forest ecosystems are vital not only for the ecosystem and biogeochemical processes, but also for the livelihood of forest dependent communities for which its continual existence is a necessity. This study explored the pattern of forest use in the hinterlands of the Niger Delta and sought to elucidate the drivers of forest loss and how the ownership and management of the forest plots influenced the changes in the forest ecosystem. Ecosystem services reduction and forest loss/degradation were found to be increasing over the years due to crude oil activities, urbanization/developments, population increase, agricultural activities and natural causes like flood. While each factor contributed to forest loss directly and indirectly, and varied from community to community, agricultural activities and population growth were responsible for most of the losses across the landscape. Even though agricultural activities were essential and thrived in the region, sustainable forest (land) uses could have reduced the associated implications of such land uses;but this was however hampered by the farming practises (shifting cultivation) across most of the communities. Lack of proper, effective and sustainable forest management structures, poor individual commitment and monitoring of forest activities were found to encourage forest loss at different spatial scales. Provision of alternative sources of livelihood and ensuring that suitable guidelines on forest abstraction and harvest are enforced across the region, are steps to promoting biodiversity conservation and resource management.
文摘Background: We explore the factors affecting the optimal plot design (size and type as well as the subsample tree selection strategies within a plot) and their relative importance in defining the optimal plot design in amultipurpose forest inventory. The factors include time used to lay out the plot and to make the tree measurements within the plot, the between-plot variation of each of the variables of interest in the area, and the measurement and model errors for the different variables. Methods: We simulate different plot types and sizes and subsample tree selection strategies on measuredtest areas from North Lapland. The plot types used are fixed-radius, concentric and relascope plots. Weselect the optimal type and size first at plot level using a cost-plus-loss approach and then at cluster level byminimizing the weighted standard error with fixed budget. Results: As relascope plots are ve~/efficient at the plot level for volume and basal area, and fixed-radius plots for stems per ha, the optimal plot type strongly depends on the relative importance of these variables. The concentric plot seems to be a good compromise between these two in many cases. The subsample tree selection strategy was more important in selecting optimal plot than many other factors. In cluster level, the most important factor is the transfer time between plots. Conclusions: While the optimal radius of plots and other parameters were sensitive to the measurement times and other cost factors, the concentric plot type was optimal in almost all studied cases. Subsample tree measurement strategies need further studies, as they were an important cost factor. However, their importance to the precision was not as clear.
文摘Acid deposition has caused serious damage to the forests of China. In this paper, the quantification theory I is used to calculate the forest volume loss caused by acid disposition in seven provinces of south China. The results showed that contribution rates of acid deposition to forest volume loss in seven provinces of south China vary from 24 5% to 37 91%; the volume loss rates range from 7% to 20%. Total volume losses per year are 1 0145×10 6 m 3, of which Zhejiang Province is the greatest, totalling 3 841×10 5 m 3, while Anhui Province is the least, amounting to 1 59×10 4 m 3.
文摘Forest landscapes are under much pressure globally due to changes in land use and their biodiversity and services are threatened at increasing magnitude especially in the tropics. Biodiversity and ample forest cover still remain in freshwater forest landscapes in the Niger basin of Nigeria, but are declining at astronomical scales across the region. To better understand the changes and modifications going on in the ecosystem at the landscape level, a thirty-year study (1987-2017) was conducted using remotely sensed Landsat imageries. These were processed and used to verify the dynamics in land cover changes and their major drivers. Land use change across the region reduced the forest extent and forest cover (up to 50.2 percent) of the natural ecosystems which served as the habitats for the indigenous species. Sparse vegetation and bare soil/farmlands increased over the study period and were seen as the major indices for modifications and forest loss in the area. Since land use indices such as agricultural activities were seen as one of the major factors of land cover change, sustainable forest use and management practices that accommodate agricultural practices were advocated. While the forest cover and ultimately their biodiversity and conservation prospects reduced following forest loss in the region, efforts should be targeted at conserving the pockets of vegetation seen in the sparsely vegetated zones and also maximize the potentials that the biodiversity in the agro-forested locations offers.
基金supported by the National Natural Science Foundation of China(3157044531570601+2 种基金31500509 and31570605)Postdoctoral Science Foundation of China(2013M540714 and 2014T70880)Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangze River
文摘Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.
基金supported by a grant from the Basij Organizationfor Research, Science and Technology in Mazan-daran Province, Iran
文摘Road prisms, such as cutslopes, fillslopes and road surfaces, can be important contributors of sediment to streams in forested watersheds. In this study rainfall simulations were carried out on cutslopes, fillslopes, road surfaces and forest grounds in hardwood forests of Lolet and Lat Talar, Iran. Water at intensity of 32.4 mm·h-1 was sprayed from a nozzle onto a square area of 0.48 m2. Runoff was collected by water gauge every 4 min and then runoff and sediment parameters were measured in each plot. Results indicated that on road surfaces, the runoff coefficient was 63.28%. On the cutslopes and fillslopes, the runoff coefficients were 35.14% and 10.23%, respectively. On the forest ground as a control, the runoff coefficient was 5.90%. Runoff volume was 2.73 mL·s^-1 on the road surfaces and 1.52 mL·s^-1 on cutslopes. On fillslopes the runoff volume was 0.44 mL·s^-1 and on the forest ground 0.25 mL·s^-1 The greatest rate of soil loss was found on the cutslope (280.79 g·m-2·h-1). The total soil loss from the cutslopes was two times higher than that from the road surfaces and six times higher than that from the fillslopes. We conclude that cutslopes can be considered the main source of sediments in our study sites, but the function of road surface as a source of runoff generation is more important.