Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO_2 emissions. However, experimental evidence for C sequestration potential(C_(sp)) in Chi...Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO_2 emissions. However, experimental evidence for C sequestration potential(C_(sp)) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore C_(sp). The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the C_(sp) of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher C_(sp) may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO2 emissions. However, experimental evidence for C sequestration potential(Csp) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore Csp. The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the Csp of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher Csp may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.展开更多
Background:Successional paludification,a dynamic process that leads to the formation of peatlands,is influenced by climatic factors and site features such as surficial deposits and soil texture.In boreal regions,proj...Background:Successional paludification,a dynamic process that leads to the formation of peatlands,is influenced by climatic factors and site features such as surficial deposits and soil texture.In boreal regions,projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development.The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100.Methods:A paludification index was built using static(e.g.surficial deposits and soil texture)and dynamic(e.g.moisture regime and soil organic layer thickness)stand scale factors available from forest maps.The index considered the effects of three temperature increase scenarios(i.e.+1°C,+3°C and+6°C)and progressively decreasing fire cycle(from 300 years for 2011–2041,to 200 years for 2071–2100)on peat accumulation rate and soil organic layer(SOL)thickness at the stand level,and paludification at the landscape level.Results:Our index show that in the context where in the absence of fire the landscape continues to paludify,the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level,and no change in the paludification level of the study area between 2011 and 2100.However,including decreasing fire cycle to the index resulted in declines in paludified area.Overall,the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100,with slower rates of paludification.Conclusions:Slower paludification rates imply greater forest productivity and a greater potential for forest harvest,but also a gradual loss of open paludified stands,which could impact the carbon balance in paludified landscapes.Nonetheless,as the thick Sphagnum layer typical of paludified forests may protect soil organic layer from drought and deep burns,a significant proportion of the territory has high potential to remain a carbon sink.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.31290221,41571130043,31570471)Chinese Academy of Sciences Strategic Priority Research Program(No.XDA05050702)+1 种基金Program for Kezhen Distinguished Talents in Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences(No.2013RC102)Program of Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO_2 emissions. However, experimental evidence for C sequestration potential(C_(sp)) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore C_(sp). The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the C_(sp) of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher C_(sp) may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.Enhancing forest carbon(C) storage is recognized as one of the most economic and green approaches to offsetting anthropogenic CO2 emissions. However, experimental evidence for C sequestration potential(Csp) in China's forest ecosystems and its spatial patterns remain unclear, although a deep understanding is essential for policy-makers making decisions on reforestation. Here, we surveyed the literature from 2004 to 2014 to obtain C density data on forest ecosystems in China and used mature forests as a reference to explore Csp. The results showed that the C densities of vegetation and soil(0–100 cm) in China's forest ecosystems were about 69.23 Mg C/ha and 116.52 Mg C/ha, respectively. In mature forests, the Csp of vegetation and soil are expected to increase to 129.26 Mg C/ha(87.1%) and 154.39 Mg C/ha(32.4%) in the coming decades, respectively. Moreover, the potential increase of C storage in vegetation(10.81 Pg C) is estimated at approximately twice that of soil(5.01 Pg C). Higher Csp may occur in the subtropical humid regions and policy-makers should pay particular attention to the development of new reforestation strategies for these areas. In addition to soil nutrients and environment, climate was an important factor influencing the spatial patterns of C density in forest ecosystems in China. Interestingly, climate influenced the spatial patterns of vegetation and soil C density via different routes, having a positive effect on vegetation C density and a negative effect on soil C density. This estimation of the potential for increasing forest C storage provided new insights into the vital roles of China's forest ecosystems in future C sequestration. More importantly, our findings emphasize that climate constraints on forest C sequestration should be considered in reforestation strategies in China because the effects of climate were the opposite for spatial patterns of C density in vegetation and soil.
基金funding from the Ontario Ministry of Natural Resource
文摘Background:Successional paludification,a dynamic process that leads to the formation of peatlands,is influenced by climatic factors and site features such as surficial deposits and soil texture.In boreal regions,projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development.The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100.Methods:A paludification index was built using static(e.g.surficial deposits and soil texture)and dynamic(e.g.moisture regime and soil organic layer thickness)stand scale factors available from forest maps.The index considered the effects of three temperature increase scenarios(i.e.+1°C,+3°C and+6°C)and progressively decreasing fire cycle(from 300 years for 2011–2041,to 200 years for 2071–2100)on peat accumulation rate and soil organic layer(SOL)thickness at the stand level,and paludification at the landscape level.Results:Our index show that in the context where in the absence of fire the landscape continues to paludify,the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level,and no change in the paludification level of the study area between 2011 and 2100.However,including decreasing fire cycle to the index resulted in declines in paludified area.Overall,the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100,with slower rates of paludification.Conclusions:Slower paludification rates imply greater forest productivity and a greater potential for forest harvest,but also a gradual loss of open paludified stands,which could impact the carbon balance in paludified landscapes.Nonetheless,as the thick Sphagnum layer typical of paludified forests may protect soil organic layer from drought and deep burns,a significant proportion of the territory has high potential to remain a carbon sink.