Insects respond to changes in microhabitat caused by canopy disturbance, and thus can be used to examine the ecological impacts of harvesting. Single-tree selection harvesting is the most common silvicultural system u...Insects respond to changes in microhabitat caused by canopy disturbance, and thus can be used to examine the ecological impacts of harvesting. Single-tree selection harvesting is the most common silvicultural system used to emulate local small-scale natural disturbance and maintain uneven-aged forest structure in temperate forests. Here, we test for differences in richness, abundance, and composition of hymenopteran and saproxylic insect assemblages at four different taxon levels (selected insect orders; and all hymenopteran families, and braconid subfamilies and morphospecies) between the canopy and understory of unharvested and single-tree selection harvested sites in a northern temperate forest from central Canada. Harvesting had no effect on insect assemblage richness, composition or abundance at the three highest taxon levels (order, family and subfamily). Similarly, richness and abundance at the lowest-taxon level (braconid morphospecies) were similar, although composition differed slightly between unharvested and harvested stands. Insect assemblages were vertically stratified, with generally higher abundance (for Diptera, Hymenoptera, some hymenopteran families and braconid subfamilies) and richness (for braconid morphospecies) in the understory than the canopy. In particular, composition of the braconid morphospecies assemblage showed relatively low similarity between the understory and canopy. Single-tree selection harvesting appears to influence wood-associated insect taxa only subtly through small changes in community composition at the lowest taxon level, and thus is recommended as a conservative approach for managing these northern temperate forests.展开更多
This paper presents an approach based on field data to model the spatial distribution of the site productivity index (SPI) of the diverse forest types in Jalisco, Mexico and the response in SPI to site and cli-matic...This paper presents an approach based on field data to model the spatial distribution of the site productivity index (SPI) of the diverse forest types in Jalisco, Mexico and the response in SPI to site and cli-matic conditions. A linear regression model was constructed to test the hypothesis that site and climate variables can be used to predict the SPI of the major forest types in Jalisco. SPI varied significantly with topog-raphy (elevation, aspect and slope), soil attributes (pH, sand and silt), climate (temperature and precipitation zones) and forest type. The most important variable in the model was forest type, which accounted for 35% of the variability in SPI. Temperature and precipitation accounted for 8 to 9% of the variability in SPI while the soil attributes accounted for less than 4% of the variability observed in SPI. No significant differences were detected between the observed and predicted SPI for the individual forest types. The linear regression model was used to develop maps of the spatial variability in predicted SPI for the individual forest types in the state. The spatial site productivity models developed in this study provides a basis for understanding the complex relationship that exists between forest productivity and site and climatic conditions in the state. Findings of this study will assist resource managers in making cost-effective decisions about the management of individual forest types in the state of Jalisco, Mexico.展开更多
The present study was undertaken in moist temperate forest of Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim of the present study was to understand the regeneration dynamics of the dominant tr...The present study was undertaken in moist temperate forest of Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim of the present study was to understand the regeneration dynamics of the dominant tree species along an altitudinal gradient in naturally regen- erating, restricted access forest. The overall regeneration status was fairly high in the study area. Most of the native canopy and undercanopy domi- nants had frequent reproduction and expanding populations, which sug- gests the stability of forest structure/composition and further expansion of dominant species. The overall regeneration of trees in the forest had a greater contribution of middle and understurey species. Because of infre- quent rep'roduction and declining populations of some of the dominant native species viz., Abies pindrow, Alnus nepalensis and Betula alnoides, structural/compositional changes in the future are expected in respective forests dominated by them..4bies pindrow and Taxus baccata need im- mediate attention by forest managers for their survival in the area. Seed- lings were found to be more prone to competition from herb and shrubs than saplings.展开更多
基金funded by the Richard Ivey Foundationthe Haliburton ForestWild Life Reserve
文摘Insects respond to changes in microhabitat caused by canopy disturbance, and thus can be used to examine the ecological impacts of harvesting. Single-tree selection harvesting is the most common silvicultural system used to emulate local small-scale natural disturbance and maintain uneven-aged forest structure in temperate forests. Here, we test for differences in richness, abundance, and composition of hymenopteran and saproxylic insect assemblages at four different taxon levels (selected insect orders; and all hymenopteran families, and braconid subfamilies and morphospecies) between the canopy and understory of unharvested and single-tree selection harvested sites in a northern temperate forest from central Canada. Harvesting had no effect on insect assemblage richness, composition or abundance at the three highest taxon levels (order, family and subfamily). Similarly, richness and abundance at the lowest-taxon level (braconid morphospecies) were similar, although composition differed slightly between unharvested and harvested stands. Insect assemblages were vertically stratified, with generally higher abundance (for Diptera, Hymenoptera, some hymenopteran families and braconid subfamilies) and richness (for braconid morphospecies) in the understory than the canopy. In particular, composition of the braconid morphospecies assemblage showed relatively low similarity between the understory and canopy. Single-tree selection harvesting appears to influence wood-associated insect taxa only subtly through small changes in community composition at the lowest taxon level, and thus is recommended as a conservative approach for managing these northern temperate forests.
文摘This paper presents an approach based on field data to model the spatial distribution of the site productivity index (SPI) of the diverse forest types in Jalisco, Mexico and the response in SPI to site and cli-matic conditions. A linear regression model was constructed to test the hypothesis that site and climate variables can be used to predict the SPI of the major forest types in Jalisco. SPI varied significantly with topog-raphy (elevation, aspect and slope), soil attributes (pH, sand and silt), climate (temperature and precipitation zones) and forest type. The most important variable in the model was forest type, which accounted for 35% of the variability in SPI. Temperature and precipitation accounted for 8 to 9% of the variability in SPI while the soil attributes accounted for less than 4% of the variability observed in SPI. No significant differences were detected between the observed and predicted SPI for the individual forest types. The linear regression model was used to develop maps of the spatial variability in predicted SPI for the individual forest types in the state. The spatial site productivity models developed in this study provides a basis for understanding the complex relationship that exists between forest productivity and site and climatic conditions in the state. Findings of this study will assist resource managers in making cost-effective decisions about the management of individual forest types in the state of Jalisco, Mexico.
基金supported by the Department of Science and Technology, Government of India, New Delhi, vide its Project No. SP/SO/PS-52/2004
文摘The present study was undertaken in moist temperate forest of Mandal-Chopta area in the Garhwal region of Uttarakhand, India. The aim of the present study was to understand the regeneration dynamics of the dominant tree species along an altitudinal gradient in naturally regen- erating, restricted access forest. The overall regeneration status was fairly high in the study area. Most of the native canopy and undercanopy domi- nants had frequent reproduction and expanding populations, which sug- gests the stability of forest structure/composition and further expansion of dominant species. The overall regeneration of trees in the forest had a greater contribution of middle and understurey species. Because of infre- quent rep'roduction and declining populations of some of the dominant native species viz., Abies pindrow, Alnus nepalensis and Betula alnoides, structural/compositional changes in the future are expected in respective forests dominated by them..4bies pindrow and Taxus baccata need im- mediate attention by forest managers for their survival in the area. Seed- lings were found to be more prone to competition from herb and shrubs than saplings.