The management of peat swamp forests in Malaysia contends with two major issues: forest fires and the effects of abandoned forest-logging drainage systems or canals. Forest fire occurs during low rainfall season relat...The management of peat swamp forests in Malaysia contends with two major issues: forest fires and the effects of abandoned forest-logging drainage systems or canals. Forest fire occurs during low rainfall season related to the local people activities. The drainage networks change the hydrological function of the intact forest ecosystem. A key function of the hydrological system in the undisturbed forest is to absorb water during rainfall season, thus delaying downstream runoff and preventing flash floods. The objective of the project described here is to restore the hydrological function of peat swamp forest (PSF) at Ayer Hitam North Forest Reserve (AHNFR) in Muar, Johor, Malaysia. The oil palm plantations, especially in the southern part of the area affect the forest reserve. Water flows out of the forest reserve through the drainage system constructed for managing these plantations. In 2016 and 2017, two water block structures or check dams were constructed near the boundaries of the forest reserve to hold the water and raise the groundwater level in the forest reserve. The implementation of the check dams at the two locations has conserved the groundwater level and subsequently, about 1.2 million m<sup>3</sup> of water was saved annually from leaving the forest reserve from each of the check dam. This project is also part of the Coca-Cola Company’s sustainability commitment for water strategy with the global that is to replenish 100% of the equivalent volume of water consumed in their products and production by 2020. Replenishment is the key sustainability commitment for the Company.展开更多
Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structu...Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structure and rich surface vegetation, deciduous broad-leaved forested swamps are considered to be one of the most difficult types of wetland to classify. In this research, with the support of remote sensing and geographic information system, multi-temporal radar images L-Palsar were used initially to extract the forest hydrological layer and phenology phase change layer as two variables through image analysis. Second, based on the environmental characteristics of forested swamps, three decision tree classifiers derived from the two variables were constructed to explore effective methods to identify deciduous broad-leaved forested swamps. Third, this study focused on analyzing the classification process between flat-forests, which are the most severely disturbed elements, and forested swamps. Finally, the application of the decision tree model will be discussed. The results showed that: 1) L-HH band(a L band with wavelength of 0–235 m in HH polarization mode; HH means Synthetic Aperture Radars transmit pulses in horizontal polarization and receive in horizontal polarization) in the leaf-off season is shown to be capable of detecting hydrologic conditions beneath the forest; 2) the accuracy of the classification(forested swamp and forest plat) was 81.5% based on hydrologic features, and 83.5% was achieved by combining hydrologic features and phenology response features, which indicated that hydrological characteristics under the forest played a key role. The HHOJ(refers to the band created by the subtraction with HH band in October and HH band in July) achieved by multi-temporal radar images did improve the classification accuracy, but not significantly, and more leaf-off radar images may be more efficient than multi-seasonal radar images for inland forested swamp mapping; 3) the lower separability between forested swamps dominated by vegetated surfaces and forest plat covered with litter was the main cause of the uncertainty in classification, which led to misleading interpretations of the pixel-based classification. Finally, through the analysis with kappa coefficients, it was shown that the value of the intersection point was an ideal choice for the variable.展开更多
Tropical forest ecosystems are generally seen as diverse ecosystems with rich biodiversity. However, how this applies to the freshwater swamp forests (especially in West Africa) is largely unknown. To verify how diver...Tropical forest ecosystems are generally seen as diverse ecosystems with rich biodiversity. However, how this applies to the freshwater swamp forests (especially in West Africa) is largely unknown. To verify how diverse this ecosystem is and how its structure varies in an intact forest landscape, one hectare forest plots were set up at 8 different points. This was used to collect information on the diversity and structure of the ecosystem. Consistent with the findings from other freshwater swamp forests, the ecosystem was seen to have a low species occurrence which ranged from 4 to 19 (mean value = 11 species) across the forest plots. Its diversity was equally low (mean = 1.66), unlike other tropical forest ecosystems. Stem heights varied as in mature tropical forest ecosystems;with the middle stratum recording the highest proportion of trees (54.63%) and the emergent layer having the least (0.83%). Its basal area, biomass and relative density were similar with other tropical ecosystems and equally had its highest species contribution from Leguminosae as in some other ecosystems as well. The ecosystem was seen to have features and characteristics that were common and similar with other tropical forest ecosystems, apart from its low diversity. Ensuring that effective and appropriate forest-tree species conservation measures are enhanced across the landscape are vital steps to securing the already existing (few) species and preventing species extinction across the ecosystem.展开更多
Using static chamber gas chromatography, we determined the seasonal dynamics, controlling factors, and distribution patterns of forest swamp CH4 levels and related environmental factors (temperature, water level) afte...Using static chamber gas chromatography, we determined the seasonal dynamics, controlling factors, and distribution patterns of forest swamp CH4 levels and related environmental factors (temperature, water level) after fire disturbance in the Xiaoxing’an Mountains. The results showed the following: during the growing season, the annual CH4 emission distribution ranged from - 0.001 ± 0.012 to 22.373 ± 3.650 mg m^-2 h^-1;mild fire caused the swamp CH4 emission flux of tussock, shrub, Alnus sibirica and birch swamp to increase by 56.0–524.7%;at low water levels, temperature had a significant influence on the swamp type, and the correlation between the methane emission flux and temperature was significantly strengthened;after a fire disturbance, methane emissions from all types of marsh were highest in summer and second highest in autumn, with a weak absorption in spring;and along the water environment gradient of the transition zone, the CH4 emission flux presented a decreasing trend in its spatial distribution pattern.展开更多
文摘The management of peat swamp forests in Malaysia contends with two major issues: forest fires and the effects of abandoned forest-logging drainage systems or canals. Forest fire occurs during low rainfall season related to the local people activities. The drainage networks change the hydrological function of the intact forest ecosystem. A key function of the hydrological system in the undisturbed forest is to absorb water during rainfall season, thus delaying downstream runoff and preventing flash floods. The objective of the project described here is to restore the hydrological function of peat swamp forest (PSF) at Ayer Hitam North Forest Reserve (AHNFR) in Muar, Johor, Malaysia. The oil palm plantations, especially in the southern part of the area affect the forest reserve. Water flows out of the forest reserve through the drainage system constructed for managing these plantations. In 2016 and 2017, two water block structures or check dams were constructed near the boundaries of the forest reserve to hold the water and raise the groundwater level in the forest reserve. The implementation of the check dams at the two locations has conserved the groundwater level and subsequently, about 1.2 million m<sup>3</sup> of water was saved annually from leaving the forest reserve from each of the check dam. This project is also part of the Coca-Cola Company’s sustainability commitment for water strategy with the global that is to replenish 100% of the equivalent volume of water consumed in their products and production by 2020. Replenishment is the key sustainability commitment for the Company.
基金Under the auspices of Special Funds of State Environmental Protection Public Welfare Industry(No.2011467032)
文摘Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structure and rich surface vegetation, deciduous broad-leaved forested swamps are considered to be one of the most difficult types of wetland to classify. In this research, with the support of remote sensing and geographic information system, multi-temporal radar images L-Palsar were used initially to extract the forest hydrological layer and phenology phase change layer as two variables through image analysis. Second, based on the environmental characteristics of forested swamps, three decision tree classifiers derived from the two variables were constructed to explore effective methods to identify deciduous broad-leaved forested swamps. Third, this study focused on analyzing the classification process between flat-forests, which are the most severely disturbed elements, and forested swamps. Finally, the application of the decision tree model will be discussed. The results showed that: 1) L-HH band(a L band with wavelength of 0–235 m in HH polarization mode; HH means Synthetic Aperture Radars transmit pulses in horizontal polarization and receive in horizontal polarization) in the leaf-off season is shown to be capable of detecting hydrologic conditions beneath the forest; 2) the accuracy of the classification(forested swamp and forest plat) was 81.5% based on hydrologic features, and 83.5% was achieved by combining hydrologic features and phenology response features, which indicated that hydrological characteristics under the forest played a key role. The HHOJ(refers to the band created by the subtraction with HH band in October and HH band in July) achieved by multi-temporal radar images did improve the classification accuracy, but not significantly, and more leaf-off radar images may be more efficient than multi-seasonal radar images for inland forested swamp mapping; 3) the lower separability between forested swamps dominated by vegetated surfaces and forest plat covered with litter was the main cause of the uncertainty in classification, which led to misleading interpretations of the pixel-based classification. Finally, through the analysis with kappa coefficients, it was shown that the value of the intersection point was an ideal choice for the variable.
文摘Tropical forest ecosystems are generally seen as diverse ecosystems with rich biodiversity. However, how this applies to the freshwater swamp forests (especially in West Africa) is largely unknown. To verify how diverse this ecosystem is and how its structure varies in an intact forest landscape, one hectare forest plots were set up at 8 different points. This was used to collect information on the diversity and structure of the ecosystem. Consistent with the findings from other freshwater swamp forests, the ecosystem was seen to have a low species occurrence which ranged from 4 to 19 (mean value = 11 species) across the forest plots. Its diversity was equally low (mean = 1.66), unlike other tropical forest ecosystems. Stem heights varied as in mature tropical forest ecosystems;with the middle stratum recording the highest proportion of trees (54.63%) and the emergent layer having the least (0.83%). Its basal area, biomass and relative density were similar with other tropical ecosystems and equally had its highest species contribution from Leguminosae as in some other ecosystems as well. The ecosystem was seen to have features and characteristics that were common and similar with other tropical forest ecosystems, apart from its low diversity. Ensuring that effective and appropriate forest-tree species conservation measures are enhanced across the landscape are vital steps to securing the already existing (few) species and preventing species extinction across the ecosystem.
基金supported by postdoctoral grant of HeiLongJiang(Grant No.LBH-Z17002)
文摘Using static chamber gas chromatography, we determined the seasonal dynamics, controlling factors, and distribution patterns of forest swamp CH4 levels and related environmental factors (temperature, water level) after fire disturbance in the Xiaoxing’an Mountains. The results showed the following: during the growing season, the annual CH4 emission distribution ranged from - 0.001 ± 0.012 to 22.373 ± 3.650 mg m^-2 h^-1;mild fire caused the swamp CH4 emission flux of tussock, shrub, Alnus sibirica and birch swamp to increase by 56.0–524.7%;at low water levels, temperature had a significant influence on the swamp type, and the correlation between the methane emission flux and temperature was significantly strengthened;after a fire disturbance, methane emissions from all types of marsh were highest in summer and second highest in autumn, with a weak absorption in spring;and along the water environment gradient of the transition zone, the CH4 emission flux presented a decreasing trend in its spatial distribution pattern.