A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established throu...A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.展开更多
A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite ...A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite element method,the CTR was discretized into a finite number of spatial particles whose motions satisfy Newton’s second law.The Van der Pol oscillator was used to simulate the effect of vortex shedding.The coupling equations of structural vibration and wake oscillator were solved using an explicit central differential algorithm.The numerical model was verified with the published results.The VIV characteristics of the CTR subjected to uniform flows,including displacement,frequency,standing wave,traveling wave,motion trajectory,and energy transfer,were studied comprehensively.The numerical results revealed that the multimode property occurs in the CF-and IL-direction VIV responses of the CTR.An increase in the flow velocity has slight effects on the maximum VIV displacement.Due to structural nonlin-earity,the double-frequency relationship in the CF and IL directions is rarely captured.Therefore,the vibration trajectories display the shape of an inclined elliptical orbit.Moreover,the negative energy region is inconspicuous under the excitation of the uniform flow.展开更多
A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking...A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.展开更多
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static an...Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.展开更多
Co, Ni, Cr and V in 25 typical soils of China were fractionated into exchangeable, carbonate bound (calcareous soils), Mn oxide bound, organically bound, amorphous Fe oxide bound, crystalline Fe oxide bound and residu...Co, Ni, Cr and V in 25 typical soils of China were fractionated into exchangeable, carbonate bound (calcareous soils), Mn oxide bound, organically bound, amorphous Fe oxide bound, crystalline Fe oxide bound and residual forms using a seven-step sequential extraction procedure, so as to study the distribution of chemical forms of these metals as well as the effects of soil properties on the distribution. The results showed that most of soil Co, Ni, Cr and V were present in residual forms, and the distribution ratio averaged 48.2% for Co, 53.0% for Ni, 81.5% for Cr and 68.7% for V. The speciation of heavy metals was greatly influenced by soil physico-chemical properties and the chemistry of elements. The results also indicated that the recovery of metal elements by the sequential extraction procedure was satisfactory, with the relative difference between the sum of seven forms and the total content in soils averaging 9.5% for Co, 12.8% for Ni, 6.6% for Cr and 7.2% for V.展开更多
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra...The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.展开更多
Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key formin...Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.展开更多
The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicificat...The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation of gold and silver-bearing minerals taking place under weak-acid conditions and near-neutral to weak-alkaline conditions, respectively, is the main or favourable factor for the ore zonation and separation between gold and silver.展开更多
Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrat...Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.展开更多
The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures ar...The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures are simplified to one-dimensional tension by constraining the radial deformation, with element birth and death method, fracture problem of circular ring are considered. The calculated results show that for insensitive materials of 1060 aluminum and 3A21 aluminum alloy, fracture strain increases corresponding to the increase of forming velocity. This trend agrees well with experimental results, and indicates inertia is the key factor to affect ductility; With element birth and death methods, fracture problems can be solved effectively. Experimental studies on formability of tubular workpieces are also conducted, experimental results show that the formability of 1060 aluminum and 3A21 aluminum alloy under electromagnetic forming is higher than that under quasistatic forming, according to the characteristics of electromagnetic forming, the forming limit diasrams of the two materials tube are also built respectively, this is very important to promote the development of electromagnetic forming and guide the engineering practices.展开更多
Two algorithms of computing stress increment by using the elasto-plasticity constitutive model are firstly formulated, which are the Euler integration method and the radial return method. Hill'48 anisotropic yield cr...Two algorithms of computing stress increment by using the elasto-plasticity constitutive model are firstly formulated, which are the Euler integration method and the radial return method. Hill'48 anisotropic yield criterion is used. The Euler integration method can not obtain more accurate computation of the stress increment as the radial return method unless enough subintervals are taken,by which the Euler integration method will take excessive computing time. Without docreasing any accuracy, the radial return method can save much time. Finally, a square cup deep drawing from NUMISHEET'93 benchmarks is simulated with a self-developed code SheetForrn in order to investigate the accuracy and efficiency of the radial return method.展开更多
The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by a...The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.展开更多
Thermal diffusion salt-bath vanadizing was finished for Crl2MoV die steel, in order to investigate the properties of vanadium carbide coatings related with the Mo contents in Crl2MoV die steel. Scanning electron micro...Thermal diffusion salt-bath vanadizing was finished for Crl2MoV die steel, in order to investigate the properties of vanadium carbide coatings related with the Mo contents in Crl2MoV die steel. Scanning electron micro- scopic observation reveals that Mo can decrease the growth rate of coating as a carbide forming element. Besides, Mo element can promote grain refinement of the coating. X-ray diffraction analysis shows that the different Mo contents have no influence on the phase structure of the coatings. Energy dispersive spectrum analysis and mechanical properties test show that Mo can diffuse into the coating and make a strengthening effect on the coating.展开更多
In the present work, the JCOE forming is inves- tigated using the finite element (FE) method. A two- dimensional FE model is established for the plane strain condition by FE code ABAQUS, and the FE model is vali- da...In the present work, the JCOE forming is inves- tigated using the finite element (FE) method. A two- dimensional FE model is established for the plane strain condition by FE code ABAQUS, and the FE model is vali- dated by experiments. The aim of this research is to inves- tigate forming quality states in the JCOE forming process; in particular, the effects of technological parameters on form- ing quality are evaluated. Taking the JCOE forming process of X80 steel φ1 219 mm × 22 mm × 12 000 mmwelding pipe for instance, the deformation characteristics of JCOE forming are analyzed, in which the geometry of the formed pipe, residual stress distributions and effects of process parameters on JCOE forming quality can be obtained. Thus, the presented results of this research provide an effective approach to improve welding pipe forming quality.展开更多
Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorpor...Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool.展开更多
This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian u...This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian updating scheme is used in combination with arc-length method,and the branch-switching method is adopted to identify the whole post-buckling procedure of the laminates.The formulation of the shell model and beam model are based on the basic concept of Ahmad.The coincidence of discrete nodes and integration points in quadrature element endows it with compactness and conciseness in the nonlinear buckling analysis of the cylindrical stiffened laminates.Several numerical examples are firstly presented to verify the effectiveness and accuracy of present formulation.Parametric studies on the effects of the height-to-breadth ratio,lamination schemes,positions,distribution,number of the stiffeners on the bifurcation and post-buckling behavior are performed.展开更多
The vibrations of beams on a nonlinear elastic foundation were analyzed considering the effects of transverse shear deformation and the rotational inertia of beams. A weak form quadrature element method (QEM) is use...The vibrations of beams on a nonlinear elastic foundation were analyzed considering the effects of transverse shear deformation and the rotational inertia of beams. A weak form quadrature element method (QEM) is used for the vibration analysis. The fundamental frequencies of beams are presented for various slenderness ratios and nonlinear foundation parameters for both slender and short beams. The results for slender beams compare well with finite element results. The analysis shows that the transverse shear deformation and the nonlinear foundation parameter significantly affect the fundamental frequency of the beams.展开更多
文摘A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.
基金supported by the National Key R&D Program of China(No.2022YFB2602800)the National Science Foundation of China(No.51979257)+3 种基金the Basic Funding of the Central Public Research Institutes(Nos.TKS20210101,TKS20220103,TKS20230102)the Fundamental Research Funds for the Central Universities(No.202413018)the postdoctoral project of Shandong(No.SDCX-ZG-202400218)the postdoctoral project of Qingdao(No.QDBSH20240101013).
文摘A three-dimensional numerical scheme was developed to investigate the vortex-induced vibration(VIV)of a catenary-type riser(CTR)in the in-line(IL)and cross-flow(CF)directions.By using the vector form intrinsic finite element method,the CTR was discretized into a finite number of spatial particles whose motions satisfy Newton’s second law.The Van der Pol oscillator was used to simulate the effect of vortex shedding.The coupling equations of structural vibration and wake oscillator were solved using an explicit central differential algorithm.The numerical model was verified with the published results.The VIV characteristics of the CTR subjected to uniform flows,including displacement,frequency,standing wave,traveling wave,motion trajectory,and energy transfer,were studied comprehensively.The numerical results revealed that the multimode property occurs in the CF-and IL-direction VIV responses of the CTR.An increase in the flow velocity has slight effects on the maximum VIV displacement.Due to structural nonlin-earity,the double-frequency relationship in the CF and IL directions is rarely captured.Therefore,the vibration trajectories display the shape of an inclined elliptical orbit.Moreover,the negative energy region is inconspicuous under the excitation of the uniform flow.
基金The National Natural Science Foundation of China(No.51308105)
文摘A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.
基金supported by the National Key Research and Development Program (No. 2016YFC0802301)the Shandong Province Science and Technology Major Project (No. 2015ZDZX04003)the Natural Science Foundation of Shandong Province (No. ZR2016GM06)
文摘Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
文摘Co, Ni, Cr and V in 25 typical soils of China were fractionated into exchangeable, carbonate bound (calcareous soils), Mn oxide bound, organically bound, amorphous Fe oxide bound, crystalline Fe oxide bound and residual forms using a seven-step sequential extraction procedure, so as to study the distribution of chemical forms of these metals as well as the effects of soil properties on the distribution. The results showed that most of soil Co, Ni, Cr and V were present in residual forms, and the distribution ratio averaged 48.2% for Co, 53.0% for Ni, 81.5% for Cr and 68.7% for V. The speciation of heavy metals was greatly influenced by soil physico-chemical properties and the chemistry of elements. The results also indicated that the recovery of metal elements by the sequential extraction procedure was satisfactory, with the relative difference between the sum of seven forms and the total content in soils averaging 9.5% for Co, 12.8% for Ni, 6.6% for Cr and 7.2% for V.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
基金Project(50575143)supported by the National Natural Science Foundation of ChinaProject(20040248005)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method.
基金Project(2011CB706605)supported by the National Basic Research Program of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2012-86)supported by the Grant from the High-end Talent Leading Program of Hubei Province,China
文摘Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.
基金This project was financially supported by Research Funds of Gold Resources and Doctoral Training Funds sponsored by Chinese Academy of Sciences
文摘The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation of gold and silver-bearing minerals taking place under weak-acid conditions and near-neutral to weak-alkaline conditions, respectively, is the main or favourable factor for the ore zonation and separation between gold and silver.
基金Project(51508562)supported by the National Natural Science Foundation of ChinaProject(ZK18-03-49)supported by the Scientific Research Program of National University of Defense Technology,China
文摘Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.
文摘The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures are simplified to one-dimensional tension by constraining the radial deformation, with element birth and death method, fracture problem of circular ring are considered. The calculated results show that for insensitive materials of 1060 aluminum and 3A21 aluminum alloy, fracture strain increases corresponding to the increase of forming velocity. This trend agrees well with experimental results, and indicates inertia is the key factor to affect ductility; With element birth and death methods, fracture problems can be solved effectively. Experimental studies on formability of tubular workpieces are also conducted, experimental results show that the formability of 1060 aluminum and 3A21 aluminum alloy under electromagnetic forming is higher than that under quasistatic forming, according to the characteristics of electromagnetic forming, the forming limit diasrams of the two materials tube are also built respectively, this is very important to promote the development of electromagnetic forming and guide the engineering practices.
文摘Two algorithms of computing stress increment by using the elasto-plasticity constitutive model are firstly formulated, which are the Euler integration method and the radial return method. Hill'48 anisotropic yield criterion is used. The Euler integration method can not obtain more accurate computation of the stress increment as the radial return method unless enough subintervals are taken,by which the Euler integration method will take excessive computing time. Without docreasing any accuracy, the radial return method can save much time. Finally, a square cup deep drawing from NUMISHEET'93 benchmarks is simulated with a self-developed code SheetForrn in order to investigate the accuracy and efficiency of the radial return method.
基金supported by the National Natural Science Foundation of China (Grant Nos.51178247 and 50778104)the National High Technology Research and Development Program of China (Grant No.2009AA04Z401)
文摘The recently proposed weak form quadrature element method (QEM) is applied to flexural and vibrational analysis of thin plates The integrals involved in the variational description of a thin plate are evaluated by an efficient numerical scheme and the par- tial derivatives at the integration sampling points are then approximated using differential quadrature analogs. Neither the grid pattern nor the number of nodes is fixed, being adjustable according to convergence need. The C~ continuity conditions char- acterizing the thin plate theory are discussed and the robustness of the weak form quadrature element for thin plates against shape distortion is examined. Examples are presented and comparisons with analytical solutions and the results of the finite element method are made to demonstrate the convergence and computational efficiency of the weak form quadrature element method. It is shown that the present formulation is applicable to thin plates with varying thickness as well as uniform plates.
基金Item Sponsored by National Natural Science Foundation of China(50671012)
文摘Thermal diffusion salt-bath vanadizing was finished for Crl2MoV die steel, in order to investigate the properties of vanadium carbide coatings related with the Mo contents in Crl2MoV die steel. Scanning electron micro- scopic observation reveals that Mo can decrease the growth rate of coating as a carbide forming element. Besides, Mo element can promote grain refinement of the coating. X-ray diffraction analysis shows that the different Mo contents have no influence on the phase structure of the coatings. Energy dispersive spectrum analysis and mechanical properties test show that Mo can diffuse into the coating and make a strengthening effect on the coating.
基金The authors are grateful for the financial support provided by the Natural Science Foundation of Hebei Provincial Education Department, China, the Natural Science Foundation of Inner Mongolia, China, the Inner Mongolia Higher School Science and Technology Research Projects and the Program of Higher-Level Talents of Inner Mongolia University, China.
文摘In the present work, the JCOE forming is inves- tigated using the finite element (FE) method. A two- dimensional FE model is established for the plane strain condition by FE code ABAQUS, and the FE model is vali- dated by experiments. The aim of this research is to inves- tigate forming quality states in the JCOE forming process; in particular, the effects of technological parameters on form- ing quality are evaluated. Taking the JCOE forming process of X80 steel φ1 219 mm × 22 mm × 12 000 mmwelding pipe for instance, the deformation characteristics of JCOE forming are analyzed, in which the geometry of the formed pipe, residual stress distributions and effects of process parameters on JCOE forming quality can be obtained. Thus, the presented results of this research provide an effective approach to improve welding pipe forming quality.
基金supported by the State Key Laboratory of Solidification Processing in NWPU (Nos.SKLSP201102 and 06-BZ-2010)Lthe China Postdoc-toral Science Foundation (No.20100470040)the National Natural Science Foundation of China (No.50871089)
文摘Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool.
基金supported by the National Natural Science Foundation of China(Nos.12202148,12172136)the Natural Science Foundation of Guangdong Province(No.2021A1515010279)+1 种基金the National Science Fund for Distinguished Young Scholar(No.11925203)the Science and Technology Project of Guangzhou(No.202102020656).
文摘This paper presents a weak form quadrature element formulation in the analysis of nonlinear bifurcation and post-buckling of cylindrical composite stiffened laminates subjected to transverse loads.A total Lagrangian updating scheme is used in combination with arc-length method,and the branch-switching method is adopted to identify the whole post-buckling procedure of the laminates.The formulation of the shell model and beam model are based on the basic concept of Ahmad.The coincidence of discrete nodes and integration points in quadrature element endows it with compactness and conciseness in the nonlinear buckling analysis of the cylindrical stiffened laminates.Several numerical examples are firstly presented to verify the effectiveness and accuracy of present formulation.Parametric studies on the effects of the height-to-breadth ratio,lamination schemes,positions,distribution,number of the stiffeners on the bifurcation and post-buckling behavior are performed.
基金Supported by the Tsinghua Fundamental Research Foundation (No. JCXX2005069)the National Natural Science Foundation of China (No. 50778104)
文摘The vibrations of beams on a nonlinear elastic foundation were analyzed considering the effects of transverse shear deformation and the rotational inertia of beams. A weak form quadrature element method (QEM) is used for the vibration analysis. The fundamental frequencies of beams are presented for various slenderness ratios and nonlinear foundation parameters for both slender and short beams. The results for slender beams compare well with finite element results. The analysis shows that the transverse shear deformation and the nonlinear foundation parameter significantly affect the fundamental frequency of the beams.