Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li...Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.展开更多
Several catalysts comprising Pt supported on octahedral Fe3O4(Pt/Fe3O4) were prepared by a facile method involving co-precipitation followed by thermal treatment at different temperatures. A variety of characterizat...Several catalysts comprising Pt supported on octahedral Fe3O4(Pt/Fe3O4) were prepared by a facile method involving co-precipitation followed by thermal treatment at different temperatures. A variety of characterization results revealed that this preparation process afforded highly crystalline octahedral Fe3O4 with a uniform distribution of Pt nanoparticles on its surface. The thermal-treatment temperature significantly influenced the redox properties of the Pt/Fe3O4 catalysts. All the Pt/Fe3O4 catalysts were found to be catalytically active and stable for the oxidation of low-concentration formaldehyde(HCHO) with oxygen. The catalyst prepared by thermal treatment at 80 °C(labelled Pt/Fe3O4-80) exhibited the highest catalytic activity, efficiently converting HCHO to CO2 and H2 O under ambient temperature and moisture conditions. The excellent performance of Pt/Fe3O4-80 was mainly attributed to beneficial interactions between the Pt and Fe species that result in the formation a higher density of active interface sites(e.g., Pt-O-FeO x and Pt-OH-FeO x). The introduction of water vapor improves the catalytic activity of the Pt/Fe3O4 catalysts as it participates in a water-assisted dissociation process.展开更多
A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as ...A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as Brumauer-Emmett-Teller(BET), X-ray diffraction(XRD), scanning electron microscopy(FE-SEM), temperature programmed reduction(H_2-TPR), temperature-programmed desorption(O_2-TPD) and X-ray photoelectron spectroscopy(XPS) were used to characterize catalysts. The results of catalytic performance tests showed that the catalyst CeO_2-Co_3O_4 with Co/(Co+Ce) ratio of 0.95 exhibited the best performance, and the temperature of complete oxidation of HCHO was 80 oC. The analytical results indicated that the addition of CeO_2 enhanced the specific surface area of Co_3O_4 and the fine dispersion of both of them. Moreover, the strong interaction between CeO_2 and Co_3O_4 resulted in the unique redox properties, which enhanced the available surface active oxygen and led to high valence state of cobalt oxide species. All those effects played crucial roles in the excellent performance of CeO_2-Co_3O_4 for the HCHO oxidation.展开更多
基金supported by the National Natural Science Foundation of China (51320105001, 51372190, 21573170, 51272199, 21433007)the National Basic Research Program of China (973 program, 2013CB632402)+2 种基金the Natural Science Foundation of Hubei Province (2015CFA001)the Fundamental Research Funds for the Central Universities (WUT: 2015-Ⅲ-034)Innovative Research Funds of SKLWUT (2015-ZD-1)~~
文摘Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.
文摘Several catalysts comprising Pt supported on octahedral Fe3O4(Pt/Fe3O4) were prepared by a facile method involving co-precipitation followed by thermal treatment at different temperatures. A variety of characterization results revealed that this preparation process afforded highly crystalline octahedral Fe3O4 with a uniform distribution of Pt nanoparticles on its surface. The thermal-treatment temperature significantly influenced the redox properties of the Pt/Fe3O4 catalysts. All the Pt/Fe3O4 catalysts were found to be catalytically active and stable for the oxidation of low-concentration formaldehyde(HCHO) with oxygen. The catalyst prepared by thermal treatment at 80 °C(labelled Pt/Fe3O4-80) exhibited the highest catalytic activity, efficiently converting HCHO to CO2 and H2 O under ambient temperature and moisture conditions. The excellent performance of Pt/Fe3O4-80 was mainly attributed to beneficial interactions between the Pt and Fe species that result in the formation a higher density of active interface sites(e.g., Pt-O-FeO x and Pt-OH-FeO x). The introduction of water vapor improves the catalytic activity of the Pt/Fe3O4 catalysts as it participates in a water-assisted dissociation process.
基金supported by the Doctoral Program of Xi'an Shiyou University(134010155)Shaanxi Provincial College Students'Inno vative Entrepreneurial Training Program(No.2016107051360 and 201610705046)
文摘A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as Brumauer-Emmett-Teller(BET), X-ray diffraction(XRD), scanning electron microscopy(FE-SEM), temperature programmed reduction(H_2-TPR), temperature-programmed desorption(O_2-TPD) and X-ray photoelectron spectroscopy(XPS) were used to characterize catalysts. The results of catalytic performance tests showed that the catalyst CeO_2-Co_3O_4 with Co/(Co+Ce) ratio of 0.95 exhibited the best performance, and the temperature of complete oxidation of HCHO was 80 oC. The analytical results indicated that the addition of CeO_2 enhanced the specific surface area of Co_3O_4 and the fine dispersion of both of them. Moreover, the strong interaction between CeO_2 and Co_3O_4 resulted in the unique redox properties, which enhanced the available surface active oxygen and led to high valence state of cobalt oxide species. All those effects played crucial roles in the excellent performance of CeO_2-Co_3O_4 for the HCHO oxidation.