The formation depth of metamorphic rocks in the Dabie ultrahigh pressure metamorphic (UHPM) zone influences not only our understanding of formation mechanism and evolution processes of collision orogenic belt, but...The formation depth of metamorphic rocks in the Dabie ultrahigh pressure metamorphic (UHPM) zone influences not only our understanding of formation mechanism and evolution processes of collision orogenic belt, but also the studies on earth's interior and geodynamic processes. In this study, the isotopic data of metamorphic rocks in the Dabie UHPM zone are discussed to give constraints on the formation depth in the Dabie UHPM zone. The ε Sr of eclogite in the Dabie UHPM zone varies from 18 to 42, and the ε Nd varies from -6.1 to -17, both of them show the characters of isotopic disequilibrium. The oxygen isotope studies indicate that the protoliths of these UHPM rocks have experienced oxygen isotope exchange with meteoric water (or sea water) before metamorphism and no significant changes in the processes of metamorphism on their oxygen isotope composition have been recorded in these rocks. Except for one sample from Bixiling, all samples of eclogite from Dabie UHPM zone show the 3He 4He ratios from 0.79×10 -7 to 9.35×10 -7 , indicating the important contribution of He from continental crust. All Sr, Nd, O and He isotopic studies indicate that the UHPM rocks retain the isotopic characteristics of their protoliths of crust origin. No significant influence of mantle materials has been found in these metamorphic rocks. Trying to explain above isotopic characteristics, some researchers assume that the speeds of dipping thrust and uplifting of rocks were both very high. In this condition, there will not be enough time for isotopic exchange between crust protolith and mantle materials. Therefore, we can not see the tracer of mantle materials in these UHPM rocks. However, this assumption can not be justified with available knowledge. Firstly, it was estimated that the whole process of UHPM took at least 15 Ma. During such a long period, and at the metamorphic temperature of ≥700 ℃, the protolith of crust origin can not escape from isotopic exchange with mantle materials if the UHPM have happened in the mantle depth of ≥100 km. In contrast, all problems will be dismissed if we assume that the UHPM have happened at the depth still in crust.展开更多
The plastic deformation of garnet in coesite bearing eclogite, quartz eclogite and garnet amphibolite of the UHPM complex in Yingshan County in the Dabie Mountains has been studied. The stress generated by the strong...The plastic deformation of garnet in coesite bearing eclogite, quartz eclogite and garnet amphibolite of the UHPM complex in Yingshan County in the Dabie Mountains has been studied. The stress generated by the strong tectonic movement was an important component of the total pressure that resulted in the formation of the eclogite in the Dabie UHPM zone. The three dimensional tectonic principal stresses and additional tectonic stress induced hydrostatic pressure [ p s=( σ 1+ σ 2+ σ 3)/3] are reconstructed according to the differential stress and the strain ratio ( α ) of the garnet in the minor coesite bearing eclogite of the Yingshan County. Then the gravity induced hydrostatic pressure ( p g) is calculated following the equation p minus p s, where p is estimated to be 2.8 GPa based on the quartz coesite geobarmeter. Therefore, the thickness of the rock column overlying the coesite bearing eclogite in the Ying shan County is determined ≥32 km. This estimation, significantly different from ≥100 km, the previous one obtained solely based on the weight/specific weight ratio (W/SW), offers a proper explanation for the puzzle that no tracer of the addition of mantle derived material has been found in the Dabie UHPM zone during the process of UHPM, although a number of researchers claim that this process took place at the depth of the mantle (≥100 km). It is concluded that attention should be paid to the additional tectonic stress induced hydrostatic pressure in the study of UHPM zones.展开更多
There are two models of ultrahigh pressure metamorphism (UHPM) zone in Dabie: the model of under thrusting returning which even arrives at the mantle and the superimposed model of tectonics in the crust. There are tw...There are two models of ultrahigh pressure metamorphism (UHPM) zone in Dabie: the model of under thrusting returning which even arrives at the mantle and the superimposed model of tectonics in the crust. There are two points of view in the argument about formation depth of ultrahigh pressure metamorphism: (1) the depth can be calculated by hydrostatic equation; (2) the high pressure was composed of gravity, tectonic and other forces instead of merely gravity force. Some misunderstandings of mechanical conceptions presented in the paper showing the hydrostatic viewpoints should be open to question. The main conceptions are: (1) the confining pressure was only formed by gravity, and the differential stress was only formed by tectonic force; (2) the differential stress is not big enough to lead to form ultrahigh pressure metamorphism; (3) once tectonic overpressure goes beyond the limited strength of rocks the tectonic force would disappear and the rocks would be broken or rheomorphied at the same time. A short discussion in basic mechanics is made in this paper for a perfect process for discussing the argument.展开更多
文摘The formation depth of metamorphic rocks in the Dabie ultrahigh pressure metamorphic (UHPM) zone influences not only our understanding of formation mechanism and evolution processes of collision orogenic belt, but also the studies on earth's interior and geodynamic processes. In this study, the isotopic data of metamorphic rocks in the Dabie UHPM zone are discussed to give constraints on the formation depth in the Dabie UHPM zone. The ε Sr of eclogite in the Dabie UHPM zone varies from 18 to 42, and the ε Nd varies from -6.1 to -17, both of them show the characters of isotopic disequilibrium. The oxygen isotope studies indicate that the protoliths of these UHPM rocks have experienced oxygen isotope exchange with meteoric water (or sea water) before metamorphism and no significant changes in the processes of metamorphism on their oxygen isotope composition have been recorded in these rocks. Except for one sample from Bixiling, all samples of eclogite from Dabie UHPM zone show the 3He 4He ratios from 0.79×10 -7 to 9.35×10 -7 , indicating the important contribution of He from continental crust. All Sr, Nd, O and He isotopic studies indicate that the UHPM rocks retain the isotopic characteristics of their protoliths of crust origin. No significant influence of mantle materials has been found in these metamorphic rocks. Trying to explain above isotopic characteristics, some researchers assume that the speeds of dipping thrust and uplifting of rocks were both very high. In this condition, there will not be enough time for isotopic exchange between crust protolith and mantle materials. Therefore, we can not see the tracer of mantle materials in these UHPM rocks. However, this assumption can not be justified with available knowledge. Firstly, it was estimated that the whole process of UHPM took at least 15 Ma. During such a long period, and at the metamorphic temperature of ≥700 ℃, the protolith of crust origin can not escape from isotopic exchange with mantle materials if the UHPM have happened in the mantle depth of ≥100 km. In contrast, all problems will be dismissed if we assume that the UHPM have happened at the depth still in crust.
文摘The plastic deformation of garnet in coesite bearing eclogite, quartz eclogite and garnet amphibolite of the UHPM complex in Yingshan County in the Dabie Mountains has been studied. The stress generated by the strong tectonic movement was an important component of the total pressure that resulted in the formation of the eclogite in the Dabie UHPM zone. The three dimensional tectonic principal stresses and additional tectonic stress induced hydrostatic pressure [ p s=( σ 1+ σ 2+ σ 3)/3] are reconstructed according to the differential stress and the strain ratio ( α ) of the garnet in the minor coesite bearing eclogite of the Yingshan County. Then the gravity induced hydrostatic pressure ( p g) is calculated following the equation p minus p s, where p is estimated to be 2.8 GPa based on the quartz coesite geobarmeter. Therefore, the thickness of the rock column overlying the coesite bearing eclogite in the Ying shan County is determined ≥32 km. This estimation, significantly different from ≥100 km, the previous one obtained solely based on the weight/specific weight ratio (W/SW), offers a proper explanation for the puzzle that no tracer of the addition of mantle derived material has been found in the Dabie UHPM zone during the process of UHPM, although a number of researchers claim that this process took place at the depth of the mantle (≥100 km). It is concluded that attention should be paid to the additional tectonic stress induced hydrostatic pressure in the study of UHPM zones.
文摘There are two models of ultrahigh pressure metamorphism (UHPM) zone in Dabie: the model of under thrusting returning which even arrives at the mantle and the superimposed model of tectonics in the crust. There are two points of view in the argument about formation depth of ultrahigh pressure metamorphism: (1) the depth can be calculated by hydrostatic equation; (2) the high pressure was composed of gravity, tectonic and other forces instead of merely gravity force. Some misunderstandings of mechanical conceptions presented in the paper showing the hydrostatic viewpoints should be open to question. The main conceptions are: (1) the confining pressure was only formed by gravity, and the differential stress was only formed by tectonic force; (2) the differential stress is not big enough to lead to form ultrahigh pressure metamorphism; (3) once tectonic overpressure goes beyond the limited strength of rocks the tectonic force would disappear and the rocks would be broken or rheomorphied at the same time. A short discussion in basic mechanics is made in this paper for a perfect process for discussing the argument.