Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on be...Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.展开更多
Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges...Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.展开更多
China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C...China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.展开更多
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la...This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.展开更多
Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.I...Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.In this paper,the geodetic satellites and photographic satellites are introduced respectively.Then,the existing problems in Chinese earth observation satellites are analyzed,and the comprehensive satellite with integrated payloads,the intensive microsatellite constellation and the intelligent observation satellite are proposed as three different development ideas for the future earth observation satellites.The possibility of the three ideas is discussed in detail,as well as the related key technologies.展开更多
Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providin...Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providing abundant BT data since 2008.Much work has been done to evaluate short-term MWRI observations,but the long-term performance of MWRIs remains unclear.In this study,operational MWRI BTs from 2012–19 were carefully examined by using simultaneous Advanced Microwave Scanning Radiometer 2(AMSR2)BTs as the reference.The BT difference between MWRI/FY3B and AMSR2 during 2012–19 increased gradually over time.As compared with MWRI/FY3B BTs over land,those of MWRI/FY3D were much closer to those of AMSR2.The ascending and descending orbit difference for MWRI/FY3D is also much smaller than that for MWRI/FY3B.These results suggested the improvement of MWRI/FY3D over MWRI/FY3B.A substantial BT difference between AMSR2 and MWRI was found over water,especially at the vertical polarization channels.A similar BT difference was found over polar water based on the simultaneous conical overpassing(SCO)method.Radiative transfer model simulations suggested that the substantial BT differences at the vertical polarization channels of MWRI and AMSR2 over water were partly contributed by their difference in the incident angle;however,the underestimation of the operational MWRI BT over water remained a very important issue.Preliminary assessment of the operational and recalibrated MWRI BT demonstrated that MWRI BTs were substantially improved after the recalibration,including the obvious underestimation of the operational MWRI BT at the vertical polarization channels over water was corrected,and the time-dependent biases were reduced.展开更多
The main geolocation technology currently used in COSPAS-SARSAT system is TDOA/FDOA or three-star TDOA,the principle is to determine the location of the signal source by using the difference in arrival time and freque...The main geolocation technology currently used in COSPAS-SARSAT system is TDOA/FDOA or three-star TDOA,the principle is to determine the location of the signal source by using the difference in arrival time and frequency of the wireless signal between different receivers.Therefore,ground monitoring stations need to be equipped with more than two antenna receiving stations,and multiple satellites should be able to simultaneously relay the distress signal from the target source in order to achieve the geolocation function.However,when the ground receiving system has only one antenna receiving station,or the target source is in a heavily obscured environment,the ground side is unable to receive the forwarded signals from multiple satellites at the same time,which will make it impossible to locate.To address these problems,in this paper,a time-sharing single satellite geolocations method based on different orbits is proposed for the first time.This method uses one or several low-earth orbit satellites(LEO)and mediumearth orbit satellites(MEO)in the visible area,and the receiving station only needs one pair of receiving antennas to complete the positioning.It can effectively compensate for the shortcomings of the traditional TDOA using the same moment and have better positioning accuracy compared with the single satellite in the same orbit.Due to the limited experimental conditions,this paper tests the navigation satellite using different orbit time-sharing single satellite geolocations,and proves that the positioning method has high positioning accuracy and has certain promotion and application value.展开更多
The perturbations of low earth orbit(LEO)satellites operating in the orbit of 300~2000 km are complicated.In particular,the atmospheric drag force and solar radiation pressure force change rapidly over a short period ...The perturbations of low earth orbit(LEO)satellites operating in the orbit of 300~2000 km are complicated.In particular,the atmospheric drag force and solar radiation pressure force change rapidly over a short period of time due to solar activities.Using spaceborne global positioning system(GPS)data of the CHAMP,GRACE and SWARM satellites from 2002 to 2020,this paper studies in depth the influence of solar activity on LEO satellites’precise orbit prediction by performing a series of orbit prediction experiments.The quality of GPS data is more susceptible to being influenced by solar activity during years when this activity is high and the changes in dynamic parameters are consistent with those of solar activity.The effects of solar activity on LEO orbit prediction accuracy are analyzed by comparing the predicted orbits with the precise ones.During years of high solar activity,the average root-mean-squares prediction errors at 10,20,and 30 minutes are 0.15,0.20,and 0.26 m,respectively,which are larger than the corresponding values in low-solar-activity years by 59%,63%,and 68%,respectively.These results demonstrate that solar activity has a great influence on the orbit prediction accuracy,especially during high-solar-activity years.We should strengthen the real-time monitoring of solar activity and geomagnetic activity,and formulate corresponding orbit prediction strategies for the active solar period.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated ...In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.展开更多
A future constellation of at least four geomagnetic satellites(designated Macao Scientific Satellite-1(MSS-1)and Macao Scientific Satellite-2(MSS-2))was recently proposed,to continue high-quality geomagnetic observati...A future constellation of at least four geomagnetic satellites(designated Macao Scientific Satellite-1(MSS-1)and Macao Scientific Satellite-2(MSS-2))was recently proposed,to continue high-quality geomagnetic observations in the post-Swarm period,focusing especially on collecting data that will provide a global,three-dimensional survey of the geomagnetic field.In this paper,we present a simulation of two years of orbits(2020.01.01-2022.01.01)of two satellites(tentatively denoted as MSS-2)that are constellated in elliptical(200×5,300 km)low-perigee orbits.By comparing error variances of Gauss coefficients,we investigate the sensitivity of lithospheric magnetic field modelling to data collected from various satellite orbits,including a near circular reference orbit of 300×350km,and elliptical orbit of 180×5,300 km,220×5,300 km,200×3,000 km and 200×1,500 km.We find that in two years the two MSS-2 satellites can collect 35,000 observations at altitude below 250 km,data that will be useful in advancing the quality of lithospheric magnetic field modelling;this number of observations reflects the fact that only 4.5%of the flight time of these satellites will be below250 km(just 6.4%of their flight time below 300 km).By combining observations from the MSS-2 satellites’elliptical orbits of 200×5,300km with observations from a circular reference orbit,the variance of the geomagnetic model can be reduced by a factor of 285 at spherical harmonic degree n=200 and by a factor of 1,300 at n=250.The planned lower perigee of their orbits allows the new satellites to collect data at unprecedentedly lower altitudes,thus dramatically improving the spatial resolution of satellite-derived lithospheric field models,(up to 80%at n=150).In addition,lowering the apogee increases the time interval during which the satellites fly at near-Earth altitudes,thus improving the model predictions at all spherical harmonic degrees(around 52%-62%at n=150).The upper limit of the expected improvement to the field model at the orbital apogee is not as good as at the perigee.However,data from the MSS-1 orbit can help fill the gap between data from the MSS-2 orbits and from the circular reference orbit for the low-degree part of the model.The feasibility of even lower-altitude flight requires further discussion with satellite engineers.展开更多
The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar f...The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar flux at any point of the earth’s surface are still insufficient worldwide;moreover, these measurements on the ground are expensive, and rare. To overcome this shortcoming, the exploitation of images from the European meteorological satellites of the second generation MSG is a reliable solution to estimate the global horizontal irradiance GHI on the ground with a good spatial and temporal coverage. Since 2004, the new generation MSG satellites provide images of Africa and Europe every 15 minutes with a spatial resolution of about 1 km × 1 km at the sub-satellite point. The objective of this work was to apply the Brazil-SR method to evaluate the global horizontal GHI irradiance for the entire Moroccan national territory from the European Meteosat Second Generation MSG satellite images. This bibliographic review also exposed the standard model of calculation of GHI in clear sky by exploiting the terrestrial meteorological measurements.展开更多
This study investigates the scheduling problem ofmultiple agile optical satelliteswith large-scale tasks.This problem is difficult to solve owing to the time-dependent characteristic of agile optical satellites,comple...This study investigates the scheduling problem ofmultiple agile optical satelliteswith large-scale tasks.This problem is difficult to solve owing to the time-dependent characteristic of agile optical satellites,complex constraints,and considerable solution space.To solve the problem,we propose a scheduling method based on an improved sine and cosine algorithm and a task merging approach.We first establish a scheduling model with task merging constraints and observation action constraints to describe the problem.Then,an improved sine and cosine algorithm is proposed to search for the optimal solution with the maximum profit ratio.An adaptive cosine factor and an adaptive greedy factor are adopted to improve the algorithm.Besides,a taskmerging method with a task reallocation mechanism is developed to improve the scheduling efficiency.Experimental results demonstrate the superiority of the proposed algorithm over the comparison algorithms.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency referenc...Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.展开更多
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o...The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.展开更多
A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Ea...A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.展开更多
This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform plana...This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform planar array(UPA)is equipped on the satellite.In LEO satellite communications,unavoidable timing and frequency offsets cause phase shifts in the transmitted signals,substantially diminishing the decoding performance of current terrestrial CCS URA receiver.To cope with this issue,we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing(CS)problem.Additionally,we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels,thereby enabling the outer decoder to support more active devices.Furthermore,the outputs of the outer decoder are used to reduce the search space of the inner decoder,which cuts down the computational complexity and accelerates the convergence of the inner decoding.Simulation results verify the effectiveness of the proposed scheme.展开更多
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
基金supported by National Natural Science Foundation of China(62032003).
文摘Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.
文摘Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.
基金funded by the National Natural Science Foundation of China(No.42074017).
文摘China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.
基金Supported by Remote Sensing Support for Offshore Ocean Environment and Polar Sea Ice Early Warning Services(102121201550000009004)。
文摘This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.
基金National Natural Science Foundation of China(No.41931076)National Natural Science Foundation for Young Scholars of China(No.41904042)。
文摘Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.In this paper,the geodetic satellites and photographic satellites are introduced respectively.Then,the existing problems in Chinese earth observation satellites are analyzed,and the comprehensive satellite with integrated payloads,the intensive microsatellite constellation and the intelligent observation satellite are proposed as three different development ideas for the future earth observation satellites.The possibility of the three ideas is discussed in detail,as well as the related key technologies.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0801301)the National Natural Science Foundation of China(Grant No.41575033)。
文摘Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providing abundant BT data since 2008.Much work has been done to evaluate short-term MWRI observations,but the long-term performance of MWRIs remains unclear.In this study,operational MWRI BTs from 2012–19 were carefully examined by using simultaneous Advanced Microwave Scanning Radiometer 2(AMSR2)BTs as the reference.The BT difference between MWRI/FY3B and AMSR2 during 2012–19 increased gradually over time.As compared with MWRI/FY3B BTs over land,those of MWRI/FY3D were much closer to those of AMSR2.The ascending and descending orbit difference for MWRI/FY3D is also much smaller than that for MWRI/FY3B.These results suggested the improvement of MWRI/FY3D over MWRI/FY3B.A substantial BT difference between AMSR2 and MWRI was found over water,especially at the vertical polarization channels.A similar BT difference was found over polar water based on the simultaneous conical overpassing(SCO)method.Radiative transfer model simulations suggested that the substantial BT differences at the vertical polarization channels of MWRI and AMSR2 over water were partly contributed by their difference in the incident angle;however,the underestimation of the operational MWRI BT over water remained a very important issue.Preliminary assessment of the operational and recalibrated MWRI BT demonstrated that MWRI BTs were substantially improved after the recalibration,including the obvious underestimation of the operational MWRI BT at the vertical polarization channels over water was corrected,and the time-dependent biases were reduced.
基金supported by National Science Foundation of China(No.91738201,U21A20450)。
文摘The main geolocation technology currently used in COSPAS-SARSAT system is TDOA/FDOA or three-star TDOA,the principle is to determine the location of the signal source by using the difference in arrival time and frequency of the wireless signal between different receivers.Therefore,ground monitoring stations need to be equipped with more than two antenna receiving stations,and multiple satellites should be able to simultaneously relay the distress signal from the target source in order to achieve the geolocation function.However,when the ground receiving system has only one antenna receiving station,or the target source is in a heavily obscured environment,the ground side is unable to receive the forwarded signals from multiple satellites at the same time,which will make it impossible to locate.To address these problems,in this paper,a time-sharing single satellite geolocations method based on different orbits is proposed for the first time.This method uses one or several low-earth orbit satellites(LEO)and mediumearth orbit satellites(MEO)in the visible area,and the receiving station only needs one pair of receiving antennas to complete the positioning.It can effectively compensate for the shortcomings of the traditional TDOA using the same moment and have better positioning accuracy compared with the single satellite in the same orbit.Due to the limited experimental conditions,this paper tests the navigation satellite using different orbit time-sharing single satellite geolocations,and proves that the positioning method has high positioning accuracy and has certain promotion and application value.
基金supported by the National Natural Science Foundation of China (Grant Nos.12173072 and 12103077)。
文摘The perturbations of low earth orbit(LEO)satellites operating in the orbit of 300~2000 km are complicated.In particular,the atmospheric drag force and solar radiation pressure force change rapidly over a short period of time due to solar activities.Using spaceborne global positioning system(GPS)data of the CHAMP,GRACE and SWARM satellites from 2002 to 2020,this paper studies in depth the influence of solar activity on LEO satellites’precise orbit prediction by performing a series of orbit prediction experiments.The quality of GPS data is more susceptible to being influenced by solar activity during years when this activity is high and the changes in dynamic parameters are consistent with those of solar activity.The effects of solar activity on LEO orbit prediction accuracy are analyzed by comparing the predicted orbits with the precise ones.During years of high solar activity,the average root-mean-squares prediction errors at 10,20,and 30 minutes are 0.15,0.20,and 0.26 m,respectively,which are larger than the corresponding values in low-solar-activity years by 59%,63%,and 68%,respectively.These results demonstrate that solar activity has a great influence on the orbit prediction accuracy,especially during high-solar-activity years.We should strengthen the real-time monitoring of solar activity and geomagnetic activity,and formulate corresponding orbit prediction strategies for the active solar period.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金supported by the National Key R&D Program of China (Grant No. 2022YFF0503700)the special found of Hubei Luojia Laboratory (220100011)supported by the Dragon 5 cooperation 2020-2024 (project no. 59236)
文摘In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.
基金Y Jiang is supported by the Macao FoundationMacao Science and Technology Development Fund,grant No.0001/2019/A1by the Pre-research Project on Civil Aerospace Technologies No.D020303/D020308 funded by China National Space Administration。
文摘A future constellation of at least four geomagnetic satellites(designated Macao Scientific Satellite-1(MSS-1)and Macao Scientific Satellite-2(MSS-2))was recently proposed,to continue high-quality geomagnetic observations in the post-Swarm period,focusing especially on collecting data that will provide a global,three-dimensional survey of the geomagnetic field.In this paper,we present a simulation of two years of orbits(2020.01.01-2022.01.01)of two satellites(tentatively denoted as MSS-2)that are constellated in elliptical(200×5,300 km)low-perigee orbits.By comparing error variances of Gauss coefficients,we investigate the sensitivity of lithospheric magnetic field modelling to data collected from various satellite orbits,including a near circular reference orbit of 300×350km,and elliptical orbit of 180×5,300 km,220×5,300 km,200×3,000 km and 200×1,500 km.We find that in two years the two MSS-2 satellites can collect 35,000 observations at altitude below 250 km,data that will be useful in advancing the quality of lithospheric magnetic field modelling;this number of observations reflects the fact that only 4.5%of the flight time of these satellites will be below250 km(just 6.4%of their flight time below 300 km).By combining observations from the MSS-2 satellites’elliptical orbits of 200×5,300km with observations from a circular reference orbit,the variance of the geomagnetic model can be reduced by a factor of 285 at spherical harmonic degree n=200 and by a factor of 1,300 at n=250.The planned lower perigee of their orbits allows the new satellites to collect data at unprecedentedly lower altitudes,thus dramatically improving the spatial resolution of satellite-derived lithospheric field models,(up to 80%at n=150).In addition,lowering the apogee increases the time interval during which the satellites fly at near-Earth altitudes,thus improving the model predictions at all spherical harmonic degrees(around 52%-62%at n=150).The upper limit of the expected improvement to the field model at the orbital apogee is not as good as at the perigee.However,data from the MSS-1 orbit can help fill the gap between data from the MSS-2 orbits and from the circular reference orbit for the low-degree part of the model.The feasibility of even lower-altitude flight requires further discussion with satellite engineers.
文摘The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar flux at any point of the earth’s surface are still insufficient worldwide;moreover, these measurements on the ground are expensive, and rare. To overcome this shortcoming, the exploitation of images from the European meteorological satellites of the second generation MSG is a reliable solution to estimate the global horizontal irradiance GHI on the ground with a good spatial and temporal coverage. Since 2004, the new generation MSG satellites provide images of Africa and Europe every 15 minutes with a spatial resolution of about 1 km × 1 km at the sub-satellite point. The objective of this work was to apply the Brazil-SR method to evaluate the global horizontal GHI irradiance for the entire Moroccan national territory from the European Meteosat Second Generation MSG satellite images. This bibliographic review also exposed the standard model of calculation of GHI in clear sky by exploiting the terrestrial meteorological measurements.
基金supported by Science and Technology on Complex Electronic System Simulation Laboratory (Funding No.6142401003022109).
文摘This study investigates the scheduling problem ofmultiple agile optical satelliteswith large-scale tasks.This problem is difficult to solve owing to the time-dependent characteristic of agile optical satellites,complex constraints,and considerable solution space.To solve the problem,we propose a scheduling method based on an improved sine and cosine algorithm and a task merging approach.We first establish a scheduling model with task merging constraints and observation action constraints to describe the problem.Then,an improved sine and cosine algorithm is proposed to search for the optimal solution with the maximum profit ratio.An adaptive cosine factor and an adaptive greedy factor are adopted to improve the algorithm.Besides,a taskmerging method with a task reallocation mechanism is developed to improve the scheduling efficiency.Experimental results demonstrate the superiority of the proposed algorithm over the comparison algorithms.
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1402100)。
文摘Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
基金supported by the National Key Research and Development Program of China(No.2020YFB1806000)。
文摘The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.
基金This work was supported by the National Key R&D Program of China(2021YFB2900604).
文摘A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.
基金supported by the National Key R&D Program of China under Grant 2023YFB2904703the National Natural Science Foundation of China under Grant 62341110,62371122 and 62322104+1 种基金the Jiangsu Province Basic Research Project under Grant BK20192002the Fundamental Research Funds for the Central Universities under Grant 2242022k30005 and 2242023K5003。
文摘This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform planar array(UPA)is equipped on the satellite.In LEO satellite communications,unavoidable timing and frequency offsets cause phase shifts in the transmitted signals,substantially diminishing the decoding performance of current terrestrial CCS URA receiver.To cope with this issue,we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing(CS)problem.Additionally,we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels,thereby enabling the outer decoder to support more active devices.Furthermore,the outputs of the outer decoder are used to reduce the search space of the inner decoder,which cuts down the computational complexity and accelerates the convergence of the inner decoding.Simulation results verify the effectiveness of the proposed scheme.
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.