We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the resu...We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .展开更多
A bound state formalism derived from a fermion-boson symmetric Lagrangian has been used to calculate the nucleon masses, the charge neutrality of the neutron, the magnetic moments and the electromagnetic form factor r...A bound state formalism derived from a fermion-boson symmetric Lagrangian has been used to calculate the nucleon masses, the charge neutrality of the neutron, the magnetic moments and the electromagnetic form factor ratios μpGEp/GMpand μnGEn/GMn. A quantitative description is obtained, assuming a mixing of a scalar bound state of 3(f f¯)fstructure with its corresponding vector (f f¯)fstate (f indicating massless elementary fermions). Only a few parameters are needed, mainly fixed by energy and momentum conservation. The nucleon stability is explained by an extra binding in the confinement potential, negative for electric and positive for magnetic binding of the proton, and opposite for the neutron. The stronger electric extra binding of the proton allows a decay of the neutron to proton and electron.展开更多
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low...The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.展开更多
Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields...Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields of the ships at different scales were solved numerically via the Reynolds-averaged Navier–Stokes method combined with the shear stress transport k–ωturbulence model.The numerical method was validated through comparisons with experimental data,and numerical uncertainty analysis was carried out based on the ITTC recommended procedure.On this basis,scale effects of the form factor were analyzed using different friction lines,and scale effects of flow fields and the mean axial wake fractions were further analyzed in details.The results showed that the form factor exhibited scale effects when adopting the ITTC-1957 line,and it increased with the increase in the Reynolds number.The scale effect of the form factor reduces the prediction precision of the full-scale ship resistance.The friction line has a significant effect on the form factor.The form factor exhibits little dependence on the Reynolds number when using the numerical friction line or the Katsui line,which is useful for full-scale ship resistance predictions.With the increasing Reynolds number,the boundary layer thickness becomes thinner and the axial velocity contour contracts toward the center plane,and there is nearly a linear relationship between the reciprocal of mean axial wake fraction on propeller disc and Reynolds number in logarithmic scale for the three types of ship forms.展开更多
Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is ...Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.展开更多
The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding ...The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding their controlling factors, this study, utilizing a total station and GPS RTK, measured the shoulder lines and channel curves of 112 gullies in six sites of the Yuanmou Dry-hot Valley and then mapped them by Arc GIS software and calculated nine parameters. The results showed that the channel lengths range from 10.88 to 249.11 m; the widths range from 6.20 to 40.99 m; the perimeters range from 54.11 to 541.67 m; the gully areas range from 153.02 to 6,930.30 m2; the left-side areas range from 92.93 to 4,027.20 m2; and the right-side areas range from 63.65 to 3,539.77 m2. The slightly sinuous and straight gullies account for 73.21% of the total gullies; the quantity of the right skewed gullies is 8.93% greater than that of the left skewed ones based on the symmetry ratio; the shape ratios range from 1.12 to 1.40 and the morphology ratios from 0.038 to 1.294; the fractal dimension is 1.192. Gullies in different sites have diverse planar characteristics. Except for the symmetry index, which was close to a negatively skewed distribution, all of the other parameters had the characteristic of positively skewed distribution. The gully area is related to the length and width, but the gully length has a weak correlation with the width. The evolutionary stage, topographic conditions, strata, soil properties, and piping erosion played very important roles in the gully planar morphology. This study could provide useful information for controlling gully erosion and safeguarding human habitation and engineering buildings.展开更多
The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquar...The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark. The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.展开更多
In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors whi...In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors which are commonly used in literature is given and it is found that our results are slightly above that of the 2PF model by 4% to 8%, but deviate from the Helm form factor by 15% to 25% for the whole recoil energy spectrum of 0 -100 keV. Moreover, taking Xe and Ge as examples, we show the dependence of the form Factor on the recoil energy.展开更多
We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form...We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.展开更多
We study the nucleon form factors and the nucleon-△(1232) transitions in a framework of hypercentral constituent quark model. The pion meson cloud effect is taken into account explicitly. Our results show that the ...We study the nucleon form factors and the nucleon-△(1232) transitions in a framework of hypercentral constituent quark model. The pion meson cloud effect is taken into account explicitly. Our results show that the pion cloud contributes substantially to the nucleon form factors as well as to the helicity amplitudes of △(1232), and it gives an improved agreement compared to the experimental.展开更多
Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributi...Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.展开更多
Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars ...Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars were collected from field experiments, and ear length(L), diameter(D), area(S) and volume(V) were recorded for individual ears, kernel weight per ear also recorded for a portion of the examined ears. Following principles of dimensional analysis, 8 theoretical equations of 3 sets,which relate ear higher dimensions to its length and diameter, were developed and parameterized and validated with the field observations. The 3 optimized equations showed that the shape of ears in maize can be featured with 3 dimensionless form factors, namely diameter-to-length ratio(c=D/L), areal form factor(b=S/L/D), and volumetric form factor(a=V/L/D/D). Statistically,all of them were significantly different among cultivars, and a's values varied from 0.582 to 0.612, and b's 0.839-0.868, and c's 0.242-0.308. Volumetric form factor and areal form factor could estimate precisely ear volume and area respectively, but diameter-to-length ratio was not suitable to estimate ear diameter by its length. Ear volume explained almost all variation of ear kernel weight and product L*D*D did the same substantially. Dimensional analysis proved to be promising in understanding relationship among morphological traits of ears in maize. Its application in crop researches should improve our knowledge of the physical properties of crop plants.展开更多
Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame w...Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame work of shell model. The model space wave functions are generated by using the Cohen-Kurath (CK) interaction, where 4He is assumed as a core and ten nucleons are distributed over the lp-shell which forms the model space. Core-polarization effects (CP) (the effects from outside lp-shell model space) are included through the first order perturbation theory. The core-polarization effects increase the form factor to be up near the experimental data which are not sufficient to give a good comparison with the calculating data.展开更多
In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. Th...In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. The results of stress intensity factors can be obtained. The results provided ir this method are in nice agreement with those of the famous alternating method by which only special cases can be solved.展开更多
We calculate the form factor M(q^(2))for the Dalitz decay J/ψ→γ*(q^(2))η(N_(f)=1)with η(N_(f))being the SU(N_(f))flavor singlet pseudoscalar meson.The difference among the partial widths Г(J/ψ→γη(N_(f)))at d...We calculate the form factor M(q^(2))for the Dalitz decay J/ψ→γ*(q^(2))η(N_(f)=1)with η(N_(f))being the SU(N_(f))flavor singlet pseudoscalar meson.The difference among the partial widths Г(J/ψ→γη(N_(f)))at different N_(f) can be attributed in part to the N_(f) and quark mass dependences induced by the U_(A)(1)anomaly dominance.M(q^(2))in both N_(f)=1,2 is well described by the single pole model M(q^(2))=M(0)/(1-q^(2)/Λ^(2)).Combined with the known experimental results of the Dalitz decays J/ψ-Pe^(+)e^(−),the pseudoscalar mass mp dependence of the pole parameter A is approximated byΛ(m^(2)_(p))=Λ_(1)(1-m^(2)_(p)/Λ_(2))withΛ_(1)=2.65(5)GeV andΛ_(2)=2.90(35)GeV.These results provide inputs for future theoretical and experimental studies on the Dalitz decays J/ψ→Pe^(+)e^(−).展开更多
We systematically analyze the quark and gluon gravitational form factors(GFFs)of the proton by connecting the energy-momentum tensor and near-threshold vector meson photoproduction(NTVMP).Specifically,the quark contri...We systematically analyze the quark and gluon gravitational form factors(GFFs)of the proton by connecting the energy-momentum tensor and near-threshold vector meson photoproduction(NTVMP).Specifically,the quark contributions of GFFs are determined by applying global fitting to the cross section of the lightest vector mesonρ0 photoproduction.Combined with the gluon GFFs obtained from heavy quarkonium J/ψphotoproduction data,the complete GFFs are obtained and compared with the experimental results and lattice quantum chromodynamics determinations.In addition,we use the resonance via Padé(RVP)method based on the Schlessinger point method to obtain a model-independent quark D-term distribution through direct analytical continuation of deeply virtual Compton scattering experimental data.If errors are considered,the results obtained with RVP are essentially consistent with those obtained by NTVMP.Moreover,the comprehensive information on GFFs helps to uncover the mass distribution and mechanical properties inside the proton.This study is not only an important basis for delving into the enigmatic properties of the proton,but also has significance for theoretically guiding future JLab and EIC experimental measurements.展开更多
The spectral form factor(SFF)can probe the eigenvalue statistic at different energy scales as its time variable varies.In closed quantum chaotic systems,the SFF exhibits a universal dip-ramp-plateau behavior,which ref...The spectral form factor(SFF)can probe the eigenvalue statistic at different energy scales as its time variable varies.In closed quantum chaotic systems,the SFF exhibits a universal dip-ramp-plateau behavior,which reflects the spectrum rigidity of the Hamiltonian.In this work,we explore the general properties of SFF in open quantum systems.We find that in open systems the SFF first decays exponentially,followed by a linear increase at some intermediate time scale,and finally decreases to a saturated plateau value.We derive general relations between(i)the early-time decay exponent and Lindblad operators;(ii)the long-time plateau value and the number of steady states.We also explain the effective field theory perspective of general behaviors.We verify our theoretical predictions by numerically simulating the Sachdev−Ye−Kitaev(SYK)model,random matrix theory(RMT),and the Bose−Hubbard model.展开更多
Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scatterin...Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering off a collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.展开更多
Nuclear binding energies, charge radii and the charge distributions of even-even tin (Sn) isotopes are calculated using relativistic mean field theory, and the theoretical results are found to be in accordance with ...Nuclear binding energies, charge radii and the charge distributions of even-even tin (Sn) isotopes are calculated using relativistic mean field theory, and the theoretical results are found to be in accordance with the experimental data. The nuclear charge form factors for Sn isotopes are calculated using the phase-shift analysis method. It is shown that the minima of the charge form factors shift upward and inward with an increase in the neutron number of the Sn isotopes.展开更多
文摘We investigate a neutral pion electromagnetic form factor in momentum space and obtain Gaussian-like function for it. The characteristic form of our neutral pion electromagnetic form factor is consistent with the results published by Jefferson Lab Hall A Collaboration. .
文摘A bound state formalism derived from a fermion-boson symmetric Lagrangian has been used to calculate the nucleon masses, the charge neutrality of the neutron, the magnetic moments and the electromagnetic form factor ratios μpGEp/GMpand μnGEn/GMn. A quantitative description is obtained, assuming a mixing of a scalar bound state of 3(f f¯)fstructure with its corresponding vector (f f¯)fstate (f indicating massless elementary fermions). Only a few parameters are needed, mainly fixed by energy and momentum conservation. The nucleon stability is explained by an extra binding in the confinement potential, negative for electric and positive for magnetic binding of the proton, and opposite for the neutron. The stronger electric extra binding of the proton allows a decay of the neutron to proton and electron.
基金Supported by Ministry of Industry and Information(No.K24097)
文摘The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
基金financially supported by the National Natural Science Foundation of China(Grant No.51809273)。
文摘Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields of the ships at different scales were solved numerically via the Reynolds-averaged Navier–Stokes method combined with the shear stress transport k–ωturbulence model.The numerical method was validated through comparisons with experimental data,and numerical uncertainty analysis was carried out based on the ITTC recommended procedure.On this basis,scale effects of the form factor were analyzed using different friction lines,and scale effects of flow fields and the mean axial wake fractions were further analyzed in details.The results showed that the form factor exhibited scale effects when adopting the ITTC-1957 line,and it increased with the increase in the Reynolds number.The scale effect of the form factor reduces the prediction precision of the full-scale ship resistance.The friction line has a significant effect on the form factor.The form factor exhibits little dependence on the Reynolds number when using the numerical friction line or the Katsui line,which is useful for full-scale ship resistance predictions.With the increasing Reynolds number,the boundary layer thickness becomes thinner and the axial velocity contour contracts toward the center plane,and there is nearly a linear relationship between the reciprocal of mean axial wake fraction on propeller disc and Reynolds number in logarithmic scale for the three types of ship forms.
基金The second author was supported by the Scientific and Technological Research Council of Turkey(TUBITAK)2219 International Postdoctoral Research Fellowship Program。
文摘Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.
基金funded by the National Natural Science Foundation of China (41101348)
文摘The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding their controlling factors, this study, utilizing a total station and GPS RTK, measured the shoulder lines and channel curves of 112 gullies in six sites of the Yuanmou Dry-hot Valley and then mapped them by Arc GIS software and calculated nine parameters. The results showed that the channel lengths range from 10.88 to 249.11 m; the widths range from 6.20 to 40.99 m; the perimeters range from 54.11 to 541.67 m; the gully areas range from 153.02 to 6,930.30 m2; the left-side areas range from 92.93 to 4,027.20 m2; and the right-side areas range from 63.65 to 3,539.77 m2. The slightly sinuous and straight gullies account for 73.21% of the total gullies; the quantity of the right skewed gullies is 8.93% greater than that of the left skewed ones based on the symmetry ratio; the shape ratios range from 1.12 to 1.40 and the morphology ratios from 0.038 to 1.294; the fractal dimension is 1.192. Gullies in different sites have diverse planar characteristics. Except for the symmetry index, which was close to a negatively skewed distribution, all of the other parameters had the characteristic of positively skewed distribution. The gully area is related to the length and width, but the gully length has a weak correlation with the width. The evolutionary stage, topographic conditions, strata, soil properties, and piping erosion played very important roles in the gully planar morphology. This study could provide useful information for controlling gully erosion and safeguarding human habitation and engineering buildings.
基金The project supported by the Natural Science Foundation of Hebei Province of China under Grant No. A2005000535
文摘The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark. The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.
基金Supported by the National Natural Science Foundation of China under Grant No.11075079
文摘In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors which are commonly used in literature is given and it is found that our results are slightly above that of the 2PF model by 4% to 8%, but deviate from the Helm form factor by 15% to 25% for the whole recoil energy spectrum of 0 -100 keV. Moreover, taking Xe and Ge as examples, we show the dependence of the form Factor on the recoil energy.
文摘We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475088 and 90103020, the CAS Knowledge Innovation Project under Grant No. KC2-SW-N02, and the Institute of Theoretical Physics The support from the Center of Theoretical Nuclear Physics, Lanzhou National Laboratory of Heavy Ion Accelerator is appreciated. 0ne of authors (Y.B. Dong) thanks the Department of Physics, Genova University for the hospitality. Authors are grateful to the discussions with M.M. Giannini and Santopinto.
文摘We study the nucleon form factors and the nucleon-△(1232) transitions in a framework of hypercentral constituent quark model. The pion meson cloud effect is taken into account explicitly. Our results show that the pion cloud contributes substantially to the nucleon form factors as well as to the helicity amplitudes of △(1232), and it gives an improved agreement compared to the experimental.
基金The project supported by the Science Foundation of Chinese Academy of Engineering Physics under Contract No.42103 and for Research Doctor Subsidizes (2001)
文摘Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.
基金Supported by the National Natural Science Foundation of China(31271658)National Key Research and Development Program of China(2016YFD0300306)
文摘Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars were collected from field experiments, and ear length(L), diameter(D), area(S) and volume(V) were recorded for individual ears, kernel weight per ear also recorded for a portion of the examined ears. Following principles of dimensional analysis, 8 theoretical equations of 3 sets,which relate ear higher dimensions to its length and diameter, were developed and parameterized and validated with the field observations. The 3 optimized equations showed that the shape of ears in maize can be featured with 3 dimensionless form factors, namely diameter-to-length ratio(c=D/L), areal form factor(b=S/L/D), and volumetric form factor(a=V/L/D/D). Statistically,all of them were significantly different among cultivars, and a's values varied from 0.582 to 0.612, and b's 0.839-0.868, and c's 0.242-0.308. Volumetric form factor and areal form factor could estimate precisely ear volume and area respectively, but diameter-to-length ratio was not suitable to estimate ear diameter by its length. Ear volume explained almost all variation of ear kernel weight and product L*D*D did the same substantially. Dimensional analysis proved to be promising in understanding relationship among morphological traits of ears in maize. Its application in crop researches should improve our knowledge of the physical properties of crop plants.
文摘Inelastic electron scattering form factors has been calculated for different parity for the two (C3) transitions of 14^N for (5.83MeV) (f^π, T = 20) level and, (5.106MeV) (f^π, T = 30) level in the frame work of shell model. The model space wave functions are generated by using the Cohen-Kurath (CK) interaction, where 4He is assumed as a core and ten nucleons are distributed over the lp-shell which forms the model space. Core-polarization effects (CP) (the effects from outside lp-shell model space) are included through the first order perturbation theory. The core-polarization effects increase the form factor to be up near the experimental data which are not sufficient to give a good comparison with the calculating data.
文摘In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. The results of stress intensity factors can be obtained. The results provided ir this method are in nice agreement with those of the famous alternating method by which only special cases can be solved.
基金Supported by the National Natural Science Foundation of China (11935017,12293060,12293065,12293061,12293062,12293063,12075253,12192264,12175063,12205311,12070131001 (CRC 110 by DFG and NNSFC))the National Key Research and Development Program of China (2020YFA0406400)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB34030302).
文摘We calculate the form factor M(q^(2))for the Dalitz decay J/ψ→γ*(q^(2))η(N_(f)=1)with η(N_(f))being the SU(N_(f))flavor singlet pseudoscalar meson.The difference among the partial widths Г(J/ψ→γη(N_(f)))at different N_(f) can be attributed in part to the N_(f) and quark mass dependences induced by the U_(A)(1)anomaly dominance.M(q^(2))in both N_(f)=1,2 is well described by the single pole model M(q^(2))=M(0)/(1-q^(2)/Λ^(2)).Combined with the known experimental results of the Dalitz decays J/ψ-Pe^(+)e^(−),the pseudoscalar mass mp dependence of the pole parameter A is approximated byΛ(m^(2)_(p))=Λ_(1)(1-m^(2)_(p)/Λ_(2))withΛ_(1)=2.65(5)GeV andΛ_(2)=2.90(35)GeV.These results provide inputs for future theoretical and experimental studies on the Dalitz decays J/ψ→Pe^(+)e^(−).
基金Supported by the National Natural Science Foundation of China(12065014,12247101)the Natural Science Foundation of Gansu province(22JR5RA266)We acknowledge the West Light Foundation of the Chinese Academy of Sciences(21JR7RA201)。
文摘We systematically analyze the quark and gluon gravitational form factors(GFFs)of the proton by connecting the energy-momentum tensor and near-threshold vector meson photoproduction(NTVMP).Specifically,the quark contributions of GFFs are determined by applying global fitting to the cross section of the lightest vector mesonρ0 photoproduction.Combined with the gluon GFFs obtained from heavy quarkonium J/ψphotoproduction data,the complete GFFs are obtained and compared with the experimental results and lattice quantum chromodynamics determinations.In addition,we use the resonance via Padé(RVP)method based on the Schlessinger point method to obtain a model-independent quark D-term distribution through direct analytical continuation of deeply virtual Compton scattering experimental data.If errors are considered,the results obtained with RVP are essentially consistent with those obtained by NTVMP.Moreover,the comprehensive information on GFFs helps to uncover the mass distribution and mechanical properties inside the proton.This study is not only an important basis for delving into the enigmatic properties of the proton,but also has significance for theoretically guiding future JLab and EIC experimental measurements.
文摘The spectral form factor(SFF)can probe the eigenvalue statistic at different energy scales as its time variable varies.In closed quantum chaotic systems,the SFF exhibits a universal dip-ramp-plateau behavior,which reflects the spectrum rigidity of the Hamiltonian.In this work,we explore the general properties of SFF in open quantum systems.We find that in open systems the SFF first decays exponentially,followed by a linear increase at some intermediate time scale,and finally decreases to a saturated plateau value.We derive general relations between(i)the early-time decay exponent and Lindblad operators;(ii)the long-time plateau value and the number of steady states.We also explain the effective field theory perspective of general behaviors.We verify our theoretical predictions by numerically simulating the Sachdev−Ye−Kitaev(SYK)model,random matrix theory(RMT),and the Bose−Hubbard model.
基金Project supported by the National Natural Science Foundation of China (Grant No 10375064), and the National High Technology Inertial Confinement Fusion.
文摘Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering off a collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.
基金supported by National Natural Science Foundation of China(Nos.10535010,10675090,10775068,10735010,10975072and11035001)the 973 National Major State Basic Research and Development of China(2007CB815004)+1 种基金CAS Knowledge Innovation Project(KJCX2-SW-N02)the Research Fund of Doctoral Point(RFDP)(Nos.20070284016,20100091110028)
文摘Nuclear binding energies, charge radii and the charge distributions of even-even tin (Sn) isotopes are calculated using relativistic mean field theory, and the theoretical results are found to be in accordance with the experimental data. The nuclear charge form factors for Sn isotopes are calculated using the phase-shift analysis method. It is shown that the minima of the charge form factors shift upward and inward with an increase in the neutron number of the Sn isotopes.