The effects of pulse current on the superplastic deformation of AZ31 magnesium alloy with different microstructures were examined. The results of TEM analysis showed that the dislocation movement was mainly glide, and...The effects of pulse current on the superplastic deformation of AZ31 magnesium alloy with different microstructures were examined. The results of TEM analysis showed that the dislocation movement was mainly glide, and the dislocation lines were approximate parallel with few dislocation tangles observed, which indicated that the dislocation movementwas promoted during the deformation, and therefore the formability of the coarse-grained AZ31 magnesium alloy was enhanced by the pulse current. This effect was also indicated by the asymmetrical contour of the free bulging sample, which was observed in the unidirectional pulses auxiliary equi-biaxial tensile test of coarse-grained alloy. In addition, the phenomenon of the restrained cavity growth caused by the thermoelectrical effect of the pulse current was discovered and studied.展开更多
基金supported by the National Natural Science Foundation of China(No. 51175112)Fundamental Research Funds for the Central Universities (Grant No. HIT.KLOF.2010039)
文摘The effects of pulse current on the superplastic deformation of AZ31 magnesium alloy with different microstructures were examined. The results of TEM analysis showed that the dislocation movement was mainly glide, and the dislocation lines were approximate parallel with few dislocation tangles observed, which indicated that the dislocation movementwas promoted during the deformation, and therefore the formability of the coarse-grained AZ31 magnesium alloy was enhanced by the pulse current. This effect was also indicated by the asymmetrical contour of the free bulging sample, which was observed in the unidirectional pulses auxiliary equi-biaxial tensile test of coarse-grained alloy. In addition, the phenomenon of the restrained cavity growth caused by the thermoelectrical effect of the pulse current was discovered and studied.