Located in Iranian sector of the Persian Gulf, Foroozan Oilfield has been producing hydrocarbons via seven different reservoirs since the 1970 s. However, understanding fluid interactions and horizontal continuity wit...Located in Iranian sector of the Persian Gulf, Foroozan Oilfield has been producing hydrocarbons via seven different reservoirs since the 1970 s. However, understanding fluid interactions and horizontal continuity within each reservoir has proved complicated in this field. This study aims to determine the degree of intra-reservoir compartmentalization using gas geochemistry, light hydrocarbon components, and petroleum bulk properties, comparing the results with those obtained from reservoir engineering indicators. For this purpose, a total of 11 samples of oil and associated gas taken from different producing wells in from the Yammama Reservoir were selected. Clear distinctions, in terms of gas isotopic signature and composition, between the wells located in northern and southern parts of the reservoir(i.e. lighter δ13 C1, lower methane concentration, and negative sulfur isotope in the southern part) and light hydrocarbon ratios(e.g. nC 7/toluene, 2,6-dmC7/1,1,3-tmcyC5 and m-xylene/4-mC8) in different oil samples indicated two separate compartments. Gradual variations in a number of petroleum bulk properties(API gravity, V/Ni ratios and asphaltene concentration) provided additional evidence on the reservoir-filling direction, signifying that a horizontal equilibrium between reservoir fluids across the Yammama Reservoir is yet to be achieved. Finally, differences in water-oil contacts and reservoir types further confirmed the compartmentalization of the reservoir into two separate compartments.展开更多
基金financially supported by the Exploration Directorate of the National Iranian Oil Company
文摘Located in Iranian sector of the Persian Gulf, Foroozan Oilfield has been producing hydrocarbons via seven different reservoirs since the 1970 s. However, understanding fluid interactions and horizontal continuity within each reservoir has proved complicated in this field. This study aims to determine the degree of intra-reservoir compartmentalization using gas geochemistry, light hydrocarbon components, and petroleum bulk properties, comparing the results with those obtained from reservoir engineering indicators. For this purpose, a total of 11 samples of oil and associated gas taken from different producing wells in from the Yammama Reservoir were selected. Clear distinctions, in terms of gas isotopic signature and composition, between the wells located in northern and southern parts of the reservoir(i.e. lighter δ13 C1, lower methane concentration, and negative sulfur isotope in the southern part) and light hydrocarbon ratios(e.g. nC 7/toluene, 2,6-dmC7/1,1,3-tmcyC5 and m-xylene/4-mC8) in different oil samples indicated two separate compartments. Gradual variations in a number of petroleum bulk properties(API gravity, V/Ni ratios and asphaltene concentration) provided additional evidence on the reservoir-filling direction, signifying that a horizontal equilibrium between reservoir fluids across the Yammama Reservoir is yet to be achieved. Finally, differences in water-oil contacts and reservoir types further confirmed the compartmentalization of the reservoir into two separate compartments.